Personal tools
Home » Working Groups » Valuation of Coastal Habitats » Relevant papers » An ecohydrology model of the Guadiana Estuary
Navigation
Log in


Forgot your password?
 
Document Actions

An ecohydrology model of the Guadiana Estuary

Estuarine Coastal Shelf Science
                                ARTICLE IN PRESS
                                        +  MODEL




1                                                                               58
2                                                                               59
3                                                                               60
                         Estuarine, Coastal and Shelf Science xx (2006) 1e12
4                                                                               61
                                                                www.elsevier.com/locate/ecss
5                                                                               62
6                                                                               63
7                                                                               64
        An ecohydrology model of the Guadiana Estuary (South Portugal)
8                                                                               65
9                                                                               66
10                                                                               67
           Eric Wolanski a,*, Luıs Chicharo b, M. Alexandra Chicharo b, Pedro Morais b
                      ´
11                                                                               68




                                                    F
                  a
12                                                                               69
                   Australian Institute of Marine Science, PMB No. 3, Townsville MC, Queensland 4810, Australia
    b
      Centro de Ciencias do Mar, Faculdade de Ciencias do Mar e do Ambiente, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
            ˆ                ˆ
13                                                                               70




                                                OO
14                                                                               71
                             Received 30 January 2005; accepted 20 March 2006
15                                                                               72
16                                                                               73
17                                                                               74
18                                                                               75
   Abstract




                                            PR
19                                                                               76
20                                                                               77
     A 1-D ecohydrology model is proposed that integrates physical, chemical and biological processes in the Guadiana Estuary during low flow
21                                                                               78
   conditions and that predicts the ecosystem health as determined by the following variables: river discharge, nutrients, suspended particulate mat-
22                                                                               79
   ter, phytoplankton, zooplankton, bivalves, zooplanktivorous fish and carnivorous/omnivorous fish. Low flow conditions prevail now that the Al-
23                                                                               80
   queva dam has been constructed. The ecological sub-model is based on the non-linear LotkaeVolterra equation. The model is successful in
24                                                                               81
                                      ED
   capturing the observations of along-river changes in these variables. It suggests that both bottom-up and top-down ecological processes control
   the Guadiana Estuary ecosystem health. A number of sensitivity tests show that the model is robust and can be used to predict e within likely
25                                                                               82
   error bounds provided by the sensitivity tests e the consequences on the estuary ecosystem health of human activities throughout the river catch-
26                                                                               83
   ment, such as the irrigation farming downstream of the Alqueva dam, reclamation of the salt marshes by urban developments, and flow regu-
27                                                                               84
   lation by the Alqueva dam. The model suggests that the estuarine ecosystem health requires transient river floods and is compromised by flow
28                                                                               85
                                  CT

   regulation by the Alqueva dam. Remedial measures are thus necessary.
29                                                                               86
   Ó 2006 Elsevier Ltd. All rights reserved.
30                                                                               87
31                                                                               88
   Keywords: ecohydrology; marine ecology; flushing; modelling; dam; flow regulation; Portugal; Alqueva dam; Guadiana Estuary
32                                                                               89
                            E



33                                                                               90
34                                                                               91
                           RR




35                                                                               92
36                                                                               93
                                              The impact on estuaries is commonly still ignored when
   1. Introduction
37                                                                               94
                                            dams and irrigation farming are proposed on rivers. In addi-
38                                                                               95
   1.1. The need for an ecohydrology estuarine model                 tion, estuaries are often regarded as sites for future develop-
39                                                                               96
                                            ment and expansion, and have been increasingly canalized
                      CO




40                                                                               97
    Throughout human history, the coastal plains and Lowland            and dyked for flood protection, and their wetlands infilled
41                                                                               98
   River valleys have usually been the most populated areas over           for residential areas.
42                                                                               99
   the world (Wolanski et al., 2004). At present, about 60% of the            All these factors impact on the biodiversity and productiv-
43                                                                               100
   world’s population lives along the estuaries and the coast (Lin-          ity and, hence, the overall health of estuaries and the ecosys-
44                                                                               101
   deboom, 2002). This is degrading estuarine and coastal waters           tem services they provide to humans (Nixon, 2003; Erzini,
                 UN




45                                                                               102
   through pollution, eutrophication, increased turbidity, overf-           2005). They increasingly lead humans away from the possibil-
46                                                                               103
   ishing, and habitat destruction. The pollutant supply does             ity of ecologically sustainable development of the coastal
47                                                                               104
   not just include nutrients; it also includes mud from eroded            zone. Integrated coastal zone management plans are drawn
48                                                                               105
                                                                  ´
   soil, heavy metals, radionuclides, hydrocarbons, and a number           up worldwide (e.g., Haward, 1996; Bille and Mermet, 2002;
49                                                                               106
   of chemicals including new synthetic products.                   Tagliani et al., 2003; Pickaver et al., 2004; Lau, 2005). How-
50                                                                               107
                                            ever, in the presence of significant river input, most are bound
51                                                                               108
                                            to fail because they commonly deal only with local, coastal is-
52                                                                               109
                                            sues, and do not consider the whole river catchment as the fun-
53                                                                               110
                                            damental planning unit. It is as if the land, the river, the
   * Corresponding author.
54                                                                               111
                                            estuary, and the sea were not part of the same system. When
    E-mail address: e.wolanski@aims.gov.au (E. Wolanski).
55                                                                               112
56                                                                               113
   0272-7714/$ - see front matter Ó 2006 Elsevier Ltd. All rights reserved.
57                                                                               114
   doi:10.1016/j.ecss.2006.05.029



                             YECSS1994_proof Š 12 July 2006 Š 1/12
                              ARTICLE IN PRESS
                                      +  MODEL

   2                  E. Wolanski et al. / Estuarine, Coastal and Shelf Science xx (2006) 1e12

115                                                                          172
   dealing with estuaries and coastal waters, in most countries        assumed to follow those described by Wolanski et al. (2004)
116                                                                          173
   land-use managers, water-resources managers, and coastal          and are sketched in Fig. 1. These processes are briefly sum-
117                                                                          174
   and fisheries managers do not cooperate effectively due to          marised below.
118                                                                          175
   administrative, economic and political constraints, and the          The ecological health of estuaries is determined by the
119                                                                          176
   absence of a forum where their ideas and approaches are           interaction between organisms and variations in salinity,
120                                                                          177
   shared and discussed (Wolanski et al., 2004). To help alleviate       currents, waves, suspended particulate matter (SPM), bed
121                                                                          178
   this problem, UNESCO e IHP has launched the ecohydrology          sediments, temperature, air exposure, hypoxia, wetland
122                                                                          179
   program. In this program, the concept of ecohydrology is          contaminants and biodiversity. Like the health of a living
123                                                                          180
   introduced as a holistic approach to the management of rivers,       organism, the health of an estuary or a coastal water body, can-
124                                                                          181
   estuaries and coastal zones within entire river catchments, by       not be measured by one single variable, indeed a number of
125                                                                          182
   adopting science-based solutions to management issues that         variables are important (Balls, 1994). Well-flushed estuaries




                                                   F
126                                                                          183
   restore or enhance natural processes as well as the use of tech-      are intrinsically more robust than poorly flushed systems. As
127                                                                          184
   nological solutions (Zalewski, 2002).                    a result, environmental degradation is most often apparent dur-




                                              OO
128                                                                          185
     This science-based management requires the use of a holis-        ing periods of reduced freshwater inflows, e.g. during drought
129                                                                          186
   tic model to quantify the human impact on the ecosystem           or when human activities reduce the freshwater flow. There-
130                                                                          187
   health of estuaries and to enable the exchange of information        fore, this ecohydrology model focuses on low flow conditions
131                                                                          188
   between oceanographers, biologists, ecologists, engineers, so-       when vertically well-mixed conditions often prevail.
132                                                                          189
   ciologists, economists and water-resources managers at local          Once riverine-derived suspended particulate matter enters the




                                         PR
133                                                                          190
   and national governmental levels, and the community.            estuary, it can be trapped within an estuarine turbidity maximum
134                                                                          191
                                         (ETM) zone (Fig. 1). The ETM is commonly located in the
135                                                                          192
                                         very low salinity reaches of an estuary. The maximum, depth-
   1.2. The science behind the model
136                                                                          193
                                         averaged, suspended solid concentration (SSC) at high water
137                                                                          194
                                         within an estuary can be predicted semi-empirically as a function
     The model is process-based. The dominant physical, chem-
138                                                                          195
                                    ED
                                         of the tidal intrusion and the tidal range (Uncles et al., 2002).
   ical, biological and human-related processes in an estuary are
139                                                                          196
140                                                                          197
141                                                                          198
142                                                                          199
                                CT

143                                                                          200
144                                                                          201
145                                                                          202
146                                                                          203
                          E



147                                                                          204
148                                                                          205
                         RR




149                                                                          206
150                                                                          207
151                                                                          208
152                                                                          209
153                                                                          210
                    CO




154                                                                          211
155                                                                          212
156                                                                          213
157                                                                          214
158                                                                          215
                UN




159                                                                          216
160                                                                          217
161                                                                          218
162                                                                          219
163                                                                          220
164                                                                          221
165                                                                          222
166                                                                          223
167                                                                          224
168                                                                          225
169                                                                          226
170                                                                          227
171                                                                          228
               Fig. 1. Sketch of the dominant processes operating in an estuary. Adapted from Wolanski et al. (2004).



                             YECSS1994_proof Š 12 July 2006 Š 2/12
                             ARTICLE IN PRESS
                                    +  MODEL

                     E. Wolanski et al. / Estuarine, Coastal and Shelf Science xx (2006) 1e12               3

                                                                 ´
229                                                                         286
     Sediment particles and aggregates within the ETM can give       of the food web and influences the fisheries (Chıcharo et al.,
230                                                                         287
   rise to marked changes in water quality. Fine particles can        2002; Erzini, 2005).
231                                                                         288
   adsorb metal ions and organic macro-molecules from solution         Several pollution sources exist in the Guadiana Estuary
232                                                                         289
   to such an extent that some metals can be completely removed       area, mainly resulting from urbanisation, agriculture (fertil-
233                                                                         290
   from solution within a strong ETM (Salomons and Forstner,         izers, pesticides, and herbicides), cattle breeding and olive
234                                                                         291
   1984; Ackroyd et al., 1986). Once nutrients enter an estuary,       oil production. The freshwater flow reaching the estuary is
235                                                                         292
   non-conservative behaviour can be pronounced. Key processes        at present regulated by more than 100 dams, including the
236                                                                         293
   responsible for this non-conservative behaviour include burial      Alqueva dam whose construction was completed in 2002
237                                                                         294
   in sediment reservoirs and desorption processes particularly if      and that forms the largest reservoir in Europe (Alveirinho
238                                                                         295
   the sediment is nutrient-rich. Nutrients are generally mainly in     et al., 2004).
239                                                                         296
   particulate form (i.e. absorbed to the mud particles in suspen-




                                                  F
240                                                                         297
   sion) in freshwater and can be released in solution in saline       1.4. Aims
241                                                                         298
   water.




                                             OO
242                                                                         299
     The salt marshes of Western Europe generally produce           This study aimed to develop an ecohydrology model to be
   more than 1 kg mÀ2 yrÀ1 of above-ground dry matter (Boor-
243                                                                         300
                                        applied to the low flow conditions in the Guadiana Estuary. It
244                                                                         301
   man et al., 1994a,b; Lefeuvre, 1996). Salt marshes export         describes such a model designed specifically for vertically
245                                                                         302
   some of this organic matter. Salt marshes and their tidal creeks     well-mixed estuaries. The ecological sub-model is also simple,
246                                                                         303
   are also an important nursery ground, and a refuge, for larvae      though still realistic. It incorporates the seven state variables:




                                        PR
247                                                                         304
   and post-larvae of bivalve, carnivorous/omnivorous fish and        nutrients, suspended particulate matter, phytoplankton, zoo-
248                                                                         305
   zooplankton.                               plankton, bivalves, zooplanktivorous fish and carnivorous/om-
249                                                                         306
     The estuary is modelled as a converter of living phyto-        nivorous fish in the estuary and it predicts the ecosystem
250                                                                         307
   plankton to detrital particles; it is also a conveyor of detrital     health.
251                                                                         308
   matter to the sea. Fishes help transfer energy and matter
252                                                                         309
                                   ED
   from estuarine plants to upper trophic levels. The great bulk       2. Material and methods
253                                                                         310
   of the organic matter produced (sometimes 90%) is processed
254                                                                         311
   through the detrital system. Zooplankton, planktivorous fish,       2.1. Field data
255                                                                         312
   interstitial micro and meiofauna, surface deposit-feeding mol-
256                                                                         313
   luscs, fishes and polychaeta, and filter-feeding invertebrates         Estuarine physical, chemical and biological data were
                               CT

257                                                                         314
   consume a much greater proportion of the primary production        obtained from the papers of M. Chicharo et al. and P. Morais
258                                                                         315
   of the phytoplankton and benthic microalgae. Annual plant         et al. in this issue and from Pinto (2000), and Esteves et al.
259                                                                         316
   growth and decay provide continuing large quantities of          (2000). Data from river inflow were obtained online from
260                                                                         317
   organic detritus. In addition, there is often a considerable input    Water National Institute (INAG), National System of Hydro-
                          E



261                                                                         318
   of detritus from river inflow. Detrital particles and their asso-     logical Resources (http://snirh.inag.pt/) from the hydrometric
262                                                                         319
   ciated microorganisms provide the basic food source for          station Pulo do Lobo (lat. 37 480 N, long. 7 380 W), located
                        RR




263                                                                         320
   primary consumers such as zooplankton, most benthic            a few kilometres above the last point of tidal influence
264                                                                         321
   invertebrates and some fishes. The first trophic level in the          ´
                                        (Mertola).
265                                                                         322
   estuarine ecosystem is therefore best described as a mixed tro-
266                                                                         323
   phic level of detritus consumers, which in varying degrees are      2.2. The estuarine ecohydrology model
267                                                                         324
   herbivores, omnivores or primary carnivores (Knox, 1986).
                    CO




268                                                                         325
                                          The prototype is the Guadiana Estuary at low flow
269                                                                         326
   1.3. Study area                              conditions e because such low flow conditions prevail now
270                                                                         327
                                        that the Alqueva dam exists. For a freshwater flow Qf <
271                                                                         328
     The Guadiana River is one of the largest in the south of the      50 m3 sÀ1, the Guadiana Estuary is vertically fairly well-
272                                                                         329
   Iberian Peninsula, crossing extensive rural areas and includes      mixed in salinity (Fortunato et al., 2002). In a vertically
                UN




273                                                                         330
   the Iberian Pyritic Belt (Gonzalez, 1995).                well-mixed estuary, the distribution of salinity S is determined
274                                                                         331
     The fluvial regime is characterised by low flows during         from the solution of the 1-D advectionediffusion equation
275                                                                         332
   summer and episodic runoff periods in winter with the result-       (Fischer et al., 1979):
276                                                                         333
   ing discharge of sediments into the estuary and coastal zone.
277                                                                         334
   The estuary is 60 km long, it has a maximum width of           vðSAÞ=vt þ vðQSÞ=vx ¼ vðEA vS=vxÞ=vx             ð1Þ
278                                                                         335
   550 m and the maximum depth varies between 5 and 17 m.
279                                                                         336
   The tidal regime of the estuary is meso-tidal, with an average      where t is the time, Q is the flow rate (driven by tides and
280                                                                         337
   amplitude of 2 m (Michel, 1980).                     river flows), E is the longitudinal eddy diffusion coefficient,
281                                                                         338
     The estuary has an important nursery function for several       and A is the cross-sectional area. Eq. (1) is solved for a series
282                                                                         339
   fish species, such as the anchovy Engraulis encrasicolus sensu       of cells of volume V distributed along the length of the estu-
283                                                                         340
   lato and several Sparidae, and crustacean species such as the       ary from the tidal limit to the mouth. The time step dt is set
284                                                                         341
   brown shrimp Crangon crangon. Moreover, the outwelling          to 1 day, thereby averaging over the tides. The open bound-
285                                                                         342
   from the estuary to the coastal area promotes the development       aries are located at the tidal limit and at the mouth. At the


                           YECSS1994_proof Š 12 July 2006 Š 3/12
                                 ARTICLE IN PRESS
                                         +  MODEL

   4                     E. Wolanski et al. / Estuarine, Coastal and Shelf Science xx (2006) 1e12

343                                                                                   400
344                                                                                   401
345                                                                                   402
346                                                                                   403
347                                                                                   404
348                                                                                   405
349                                                                                   406
350                                                                                   407
351                                                                                   408
352                                                                                   409
353                                                                                   410




                                                      F
354                                                                                   411
355                                                                                   412




                                                OO
356                                                                                   413
357                                                                                   414
358                                                                                   415
   Fig. 2. Observed and predicted along-channel distributions of salinity in the Guadiana Estuary around the times of (square) high tide and (circle) low tide for
   salinity of (a) 2 m3 sÀ1 and (b) 50 m3 sÀ1. Cell # 1 is located at the tidal limit, 60 km upstream of cell # 20 that is located at the mouth.
359                                                                                   416
360                                                                                   417




                                            PR
361                                                                                   418
   tidal limit, the model assumes that the salinity S ¼ 0 and it           vðCAÞ=vt þ vðQCÞ=vx ¼ vðEA vC=vxÞ=vx þ DC                ð2Þ
362                                                                                   419
   also assumes that Qf is known. At the mouth, the salinity
363                                                                                   420
   is assumed to be 35. Turbulent diffusion is due to tides,             where DC is derived from the ecological sub-model described
364                                                                                   421
   wind, and freshwater runoffs and is parameterised by the pa-           below.
365                                                                                   422
   rameter E. In the model, this is determined by mixing coef-             The ecological sub-model is based on the non-linear
366                                                                                   423
                                       ED
   ficients that quantify the fraction of water in a cell that is           LotkaeVolterra equation. It is based on a finite-element model
367                                                                                   424
   exchanged with adjoining cells during the time step (1              with the same cells as those used in the salinity model. A num-
368                                                                                   425
   day). This parameter is varied until the solution fits well            ber of modeling equations are possible. In the absence of
369                                                                                   426
   with the observations. This is shown in Fig. 2 for the case            excretion and death not due to predation, the predatoreprey
370                                                                                   427
   of the Guadiana Estuary for two values of the freshwater dis-           relationship is often calculated by the non-linear equations
                                  CT

371                                                                                   428
   charge Qf (2 and 5 m3 sÀ1).                            (Brauer and Castillo-Chavez, 2001; Kot, 2001).
372                                                                                   429
     The model enables one to readily calculate the flushing time
                                            vX=vt ¼ bXð1 À X=Xo ÞHðY; Yo1 Þ                     ð3Þ
373                                                                                   430
   of the estuary. To do that, in the model the freshwater discharge
374                                                                                   431
   is set to be a constant and the estuary is initially filled with uni-
                                            and
                             E



375                                                                                   432
   form seawater salinity at t ¼ 0. The system is then allowed to
376                                                                                   433
   evolve, and in the model salt is progressively expelled from           vY=vt ¼ ÀbXð1 À X=Xo ÞHðY; Yo1 Þ                     ð4Þ
                            RR




377                                                                                   434
   the upper reaches of the estuary until a steady state solution is
378                                                                                   435
                                            where X is the predator biomass (X ¼ CV) where C is the pred-
   reached. This is shown in Fig. 3 for a freshwater discharge
379                                                                                   436
   (Qf) of, respectively, 2 and 50 m3 sÀ1. It is apparent that for          ator concentration, Y is the prey biomass, b is the predator
380                                                                                   437
   Qf ¼ 50 m3 sÀ1 the residence time is about 5 days, and that for          growth rate, Xo is the predator saturation biomass, Yo1 is the
381                                                                                   438
   Qf ¼ 2 m3 sÀ1 the residence time varies between 14 days in            prey starvation biomass, i.e. the biomass at which the predator
                       CO




382                                                                                   439
   the lower reaches and 37 days in the upper reaches of the estuary.        is unable or unwilling to spend energy to find this prey. H is
383                                                                                   440
                                            the Heavyside function, i.e. H ¼ 0 if Y < Yo1, and H ¼ 1 if
     For a non-conservative constituent such as nutrients, plank-
384                                                                                   441
                                            Y > Yo1. Eq. (2) also applies if Y is a nutrient. Provided starva-
   ton, detritus, fish, and bivalve, Eq. (1) is modified by including
385                                                                                   442
   a sinkesource term DC (Thomann, 1980), where C is the               tion does not occur, the solution is an S-shaped curve whereby
386                                                                                   443
   concentration:                                  X initially increases exponentially in time. The growth rate is
                  UN




387                                                                                   444
388                                                                                   445
389                                                                                   446
390                                                                                   447
391                                                                                   448
392                                                                                   449
393                                                                                   450
394                                                                                   451
395                                                                                   452
396                                                                                   453
397                                                                                   454
398                                                                                   455
   Fig. 3. Estimation of the residence time from the time series of salinity distribution in the estuary following intrusion of freshwater for (a) 2 m3 sÀ1 and
   (b) 50 m3 sÀ1.
399                                                                                   456
                             ARTICLE IN PRESS
                                    +  MODEL

                     E. Wolanski et al. / Estuarine, Coastal and Shelf Science xx (2006) 1e12               5

   zero at X ¼ Xo. Because X and Y are related by Eqs. (3) and
457                                                                         514
                                        concentration (N ), suspended sediment concentration (SSC),
458                                                                         515
   (4), Y decreases toward a minimum value.                 phytoplankton concentration (P), zooplankton concentration
459                                                                         516
     In the model, freshwater phytoplankton and bacterioplank-       (Z ), bivalve concentration (B), detritus concentration (D), zoo-
460                                                                         517
   ton in the river are subject to salt stress when freshwater mixes     planktivorous fish concentration (ZF), and carnivorous/omniv-
461                                                                         518
   with saltwater; and the freshwater microbial populations die in      orous fish concentration (CF). All dying matter becomes
462                                                                         519
   this zone (Flameling and Kromkamp, 1994; Goosen et al.,          detritus. Settling is not included in the model, because the an-
463                                                                         520
   1995). In the model, the salinity also limits the seaward distri-     imals (e.g. zooplankton) are mobile and can swim in the water.
464                                                                         521
   bution of saline water plankton, invertebrates (e.g. bivalves)      The model is equally complex at the lowest and highest tro-
465                                                                         522
   and fishes.                                phic levels, which increases the model robustness (Jorgensen
466                                                                         523
     In an estuary, changes in salinity constitute a major stress      and Bendoricchio, 2001). Thus the ecosystem model equations
467                                                                         524
   that can lead to death. There are other stressors, for instance,     are:




                                                  F
468                                                                         525
   small values of the dissolved oxygen concentration. A death-
469                                                                         526
   excretion rate d must then be added to Eq. (3) that becomes:       Nutrients (N; nitrate)




                                             OO
470                                                                         527
   vX=vt ¼ bXð1 À X=Xo ÞHðY; Yo1 Þ À dX               ð5Þ   vN=vt¼ÀbNP Pð1ÀP=Po ÞHðN;No1 ÞþaN þgSSCN SSC         ð7Þ
471                                                                         528
472                                                                         529
                                        Phytoplankton (P)
     The solution of this equation is also an S-shaped curve, the
473                                                                         530
   maximum value, however, is smaller than in the absence of
474                                                                         531




                                        PR
                                        vP=vt ¼ bNP Pð1 À P=Po ÞHðN;No1 Þ À bPZ Zð1 À Z=Zo ÞHðP;Po1 Þ
   this death-excretion rate, that is X ¼ Xo(1 À d/b). To remain re-
475                                                                         532
   alistic the solution requires b > d, i.e. that the growth rate is
476                                                                         533
                                            À bPB Bð1 À B=Bo ÞHðP;Po1 Þ
   larger than the death-excretion rate.
477                                                                         534
                                             À bPCF CFð1 À CF=CFo ÞHðP;Po1 Þ þ aP À dP P    ð8Þ
     In an estuary, fringing wetlands (mainly salt marshes and
478                                                                         535
   riparian ecotones, together with the tidal creeks that drain
479                                                                         536
                                        Zooplankton (Z )
   them) can be an important source of detritus and nutrients,
480                                                                         537
                                   ED
   as well as a nursery for juveniles and sub-adults as well as
481                                                                         538
                                        vZ=vt ¼ bPZ Zð1 À Z=Zo ÞHðP;Po1 Þ þ bDZ Zð1 À Z=Zo ÞHðD;Do1 Þ
   a refuge. This is particularly the case for bivalves. Mathemat-
482                                                                         539
                                             À bZZF ZFð1 À ZF=ZFo ÞHðZ;Zo1 Þ
   ically, this is expressed by adding a source of X to the right-
483                                                                         540
                                             À bZCF CFð1 À CF=CFo ÞHðZ;Zo1 Þ þ aZ À dZ Z    ð9Þ
   hand side of Eq. (5). The final equation becomes:
484                                                                         541
                               CT

485                                                                         542
   vX=vt ¼ bXð1 À X=Xo ÞHðY; Yo1 Þ À dX þ a             ð6Þ
486                                                                         543
                                        Bivalves (B)
487                                                                         544
   where a is the import rate from wetlands.
488                                                                         545
                                        vB=vt ¼ bPB Bð1ÀB=Bo ÞHðP;Po1 ÞþbDB Bð1ÀB=Bo ÞHðD;Do1 Þ
    The ecosystem model represents mathematically through
                          E



489                                                                         546
                                             ÀbBCF CFð1ÀCF=CFo ÞHðB;Bo1 ÞþaB ÀdB B       ð10Þ
   Eq. (5) the interactions summarised in Fig. 4 between nutrients
490                                                                         547
                        RR




491                                                                         548
492                                                                         549
493                                                                         550
494                                                                         551
495                                                                         552
                    CO




496                                                                         553
497                                                                         554
498                                                                         555
499                                                                         556
500                                                                         557
                UN




501                                                                         558
502                                                                         559
503                                                                         560
504                                                                         561
505                                                                         562
506                                                                         563
507                                                                         564
508                                                                         565
509                                                                         566
510                                                                         567
511                                                                         568
512                                                                         569
513                                                                         570
                      Fig. 4. Sketch of the estuarine food web in the ecohydrology model.



                           YECSS1994_proof Š 12 July 2006 Š 5/12
                             ARTICLE IN PRESS
                                     +  MODEL

   6                  E. Wolanski et al. / Estuarine, Coastal and Shelf Science xx (2006) 1e12

571                                                                          628
   Carnivorous/omnivorous fish (CF)                      SSC ¼ 30 if S < 1
572                                                                          629
                                         SSC ¼ 30 þ 7S if 1 < S < 12
573                                                                          630
   vCF=vt ¼ bBCF CFð1 À CF=CFo ÞHðB;Bo1 Þ                   SSC ¼ 100 À 3:5ðS À 15Þ if S > 12
574                                                                          631
        þ bPCF CFð1 À CF=CFo ÞHðP;Po1 Þ
575                                                                          632
                                          The model needs the knowledge of all the ecological pa-
        þ bZCF CFð1 À CF=CFo ÞHðZ;Zo1 Þ
576                                                                          633
                                        rameters. The parameter a varies along-channel to correspond
        þ bDCF CFð1 À CF=CFo ÞHðD;Do1 Þ
577                                                                          634
                                        to the location of the salt marshes and riparian/terrestrial veg-
578                                                                          635
        þ aCF À dCF CF                    ð11Þ    etation. The approximate values of the parameters are known
579                                                                          636
                                        from a number of studies and from comparison with other es-
580                                                                          637
                                        tuaries. The final values were selected as a result of a best-fit
   Zooplanktivorous fish (ZF)
581                                                                          638
                                        between observed and predicted values. The results of this cal-




                                                  F
582                                                                          639
                                        ibration are shown in Fig. 5 for nutrients, zooplankton, bi-
   vZF=vt ¼ bZZF ZFð1ÀZF=ZFo ÞHðZ;Zo1 Þ
583                                                                          640
                                        valve, and fish, respectively. Table 1 lists the adopted values




                                             OO
       þbDZF ZFð1ÀZF=ZFo ÞHðD;Do1 ÞþaZF ÀdZF ZF ð12Þ
584                                                                          641
                                        of the parameters.
585                                                                          642
                                          While the calibration appears successful, it is important for
586                                                                          643
                                        the user to also judge whether the solution is realistic and sta-
   Detritus (D)
587                                                                          644
                                        ble (Hilborn and Mangel, 1997). This may be done by under-
588                                                                          645
                                        taking a sensitivity test to judge whether the model is
   vD=vt ¼ ÀbDB Bð1ÀB=Bo ÞHðD;Do1 Þ



                                        PR
589                                                                          646
                                        unrealistically sensitive to a specific parameter, making it po-
       ÀbDZF ZFð1ÀZF=ZFo ÞHðD;Do1 Þ
590                                                                          647
                                        tentially unstable and unrealistic. A number of sensitivity runs
        ÀbDCF CFð1ÀCF=CFo ÞHðD;Do1 Þ
591                                                                          648
                                        were carried out, each one involving changing one parameter.
                                        Calculations were performed for Qf ¼ 2 m3 sÀ1, which is the
592                                                                          649
        ÀbDZ Zð1ÀZ=Zo ÞHðD;Do1 ÞþaD þaD þdB BþdP P
593                                                                          650
                                        environmental flow for the Guadiana River, i.e. the post-dam
        þdZ Z þdCF CFþdZF ZF                 ð13Þ
594                                                                          651
                                   ED
                                        river discharge during the dry season. The list of sensitivity
595                                                                          652
                                        runs is summarised in Table 2.
     In these equations the subscripts denote either constituent
596                                                                          653
                                          The sensitivity tests show that phytoplankton (Chl a) is
   or the interaction between two constituents. For instance,
597                                                                          654
                                        most sensitive in cases 2, 4 and 5, i.e. to bNP, bPB and dP
   dZF is the death-excretion rate of ZF, and bDZF is the growth
598                                                                          655
                                        (Fig. 6a).
                               CT

   rate of ZF from detritus, i.e. the rate of mass transfer rate
599                                                                          656
                                          These results suggest that bivalves play a more important
   from detritus to ZF.
600                                                                          657
                                        role in filtering phytoplankton than zooplankton. This can re-
     In the nutrient equation, a new parameter was introduced,
601                                                                          658
                                        sult from the fact that bivalves are benthic and sessile organ-
   gSSCN, it denotes the leaching rate of nutrients from the partic-
602                                                                          659
                                        isms, being able to resist currents as opposite to zooplankton
                          E



   ulate phase (i.e. absorbed on the fine sediment) to the dis-
603                                                                          660
                                        populations, although some develop strategies to resist dis-
   solved phase.
604                                                                          661
                                        placement forces (Simenstad et al., 1994).
                        RR




     In Eq. (2), because the model is run at a time step of 1 day,
605                                                                          662
                                          The most important parameter for zooplankton is dZ (the
   Q ¼ Qf. There is thus no need to calculate the tidal dynamics;
606                                                                          663
                                        death-excretion rate of zooplankton), and to a lesser degree
   these are parameterised by the term E.
607                                                                          664
                                        bNP (uptake rate of nutrient by phytoplankton) and bPZ (uptake
     When applying Eq. (2) to the zooplanktivorous fish equa-
608                                                                          665
                                        rate of phytoplankton by zooplankton). The model zooplankton
   tion, Q is modified to incorporate the horizontal swimming
609                                                                          666
                                        (Z ) is most sensitive in case 7 and to a lesser degree in cases 2
                    CO




   by the fish as fish swim, by kinesis or taxis following environ-
610                                                                          667
                                        and 3 (Fig. 6). As detritus can also be included in zooplankton
                                        diet, if bDZ ¼ 0.1 dayÀ1. In fact, in a situation of low inflow e as
   mental clues (Wolanski et al., 1997; Humston et al., 2000).
611                                                                          668
   This velocity is assumed to be proportional to S. Thus the
612                                                                          669
                                        the one tested in the sensitivity runs (Fig. 6c) e the expected de-
   fish in the model is able to swim, following taxis or kinesis,
613                                                                          670
                                        crease in detritus input caused by the reduction of inflow will
   along environmental gradients.
614                                                                          671
                                        affect the zooplankton biomass in the estuary, which highlights
                UN




615                                                                          672
                                        the importance of detritus as food source for estuarine zoo-
616                                                                          673
                                        plankton (Edwards, 2001; Kibirige et al., 2002).
   3. Results and discussion
617                                                                          674
                                          The model also shows that zooplanktivorous fish (ZF) is
618                                                                          675
                                        most sensitive to bZZF, bDZF, and dZF (i.e. respectively, the up-
   3.1. Application to the Guadiana Estuary
619                                                                          676
                                        take rate of zooplankton by zooplanktivorous fish, the uptake
620                                                                          677
     In the Guadiana Estuary, field data of fine sediment concen-       rate of detritus by zooplanktivorous fish, and the death rate of
   tration during low flow conditions (Qf < 50 m3 sÀ1) suggest
621                                                                          678
                                        the zooplanktivorous fish; cases 6, 11 and 12) (Fig. 6d). In
622                                                                          679
   the presence of a weak turbidity maximum zone near the salin-       fact, salinity changes caused by modification of freshwater/
   ity intrusion limit, with a maximum SSC value of 114 mg lÀ1
623                                                                          680
                                        seawater balance may affect zooplanktoneprey distribution
   at S ¼ 12 while SSC is about 30 mg lÀ1 in the freshwater rea-
624                                                                          681
                                        and impact zooplanktivorous fish species distribution. More-
625                                                                          682
   ches of the estuary (Portela, unpubl. data). Therefore, the        over, it suggests that the export of detritus from the salt marsh
626                                                                          683
   model assumes a suspended sediment concentration (SSC)          does not seem to be the most important source of food for
627                                                                          684
   that is determined as follows:                      these fish.


                            YECSS1994_proof Š 12 July 2006 Š 6/12
                                 ARTICLE IN PRESS
                                        +  MODEL

                         E. Wolanski et al. / Estuarine, Coastal and Shelf Science xx (2006) 1e12                      7

685                                                                                    742
686                                                                                    743
687                                                                                    744
688                                                                                    745
689                                                                                    746
690                                                                                    747
691                                                                                    748
692                                                                                    749
693                                                                                    750
694                                                                                    751
695                                                                                    752




                                                      F
696                                                                                    753
697                                                                                    754




                                                 OO
698                                                                                    755
699                                                                                    756
700                                                                                    757
701                                                                                    758
702                                                                                    759




                                            PR
703                                                                                    760
704                                                                                    761
705                                                                                    762
706                                                                                    763
707                                                                                    764
708                                                                                    765
                                       ED
709                                                                                    766
710                                                                                    767
711                                                                                    768
712                                                                                    769
                                   CT

713                                                                                    770
714                                                                                    771
715                                                                                    772
   Fig. 5. Along-channel distribution in the Guadiana Estuary of (a) observed (dots) and predicted (line) total fish biomass, (b) observed (dots) and predicted (line)
716                                                                                    773
   bivalve biomass, (c) observed (dots) and predicted (line) nutrients’ (nitrate) mass, and (d) observed (dots) and predicted (line) zooplankton biomass. To convert
                             E



717                                                                                    774
                            À2             À2                            À3
   biomass to concentration, for fish 2.8e2.87 g cm , for bivalve 1.2e24 m , for nitrate 4e15.5 mM, and for zooplankton 1e54 m .
718                                                                                    775
                            RR




719                                                                                    776
                                              Table 2
720                                            Model sensitivity runs. All the runs were carried out for a steady, freshwater 777
721                                                                                    778
                                              discharge Qf ¼ 2 m3 sÀ1. Rates are expressed as dayÀ1
722                                                                                    779
                                              Run 1:         Standard run
   Table 1
723                                                                                    780
                                                          bNP decreased from 0.1 to 0.05
                                              Run 2:
                       CO




   Final values of the parameters. Rates are expressed as dayÀ1
724                                                                                    781
                                                          bPZ decreased from 0.1 to 0.05
                                              Run 3:
                                                          bPB decreased from 0.1 to 0.05
   bNP                                         Run 4:
                          0.2
725                                                                                    782
                                                          dP decreased from 0.05 to 0.025
   bPZ                                         Run 5:
                          0.1
726                                                                                    783
                                                          bZZF decreased from 0.1 to 0.05
                                              Run 6:
   bPB                     0.1
727                                                                                    784
                                                          dZ decreased from 0.1 to 0.05
                                              Run 7:
   dP                      0.05
728                                                                                    785
                                                          bBCF decreased from 0.1 to 0.05
   bZZF                                         Run 8:
                          0.1
                  UN




729                                                                                    786
   dZ                                          Run 9:         decreased from 0.1 to 0.05
                          0.1
                                                          dCF decreased from 0.1 to 0.05
                                              Run 10:
   bBCF                     0.1
730                                                                                    787
                                                          bDZF decreased from 0.1 to 0.05
                                              Run 11:
   dB                      0.1
731                                                                                    788
                                                          dZF decreased from 0.1 to 0.05
   dCF                                         Run 12:
                          0.1
732                                                                                    789
                                                          bSSCN decreased from 0.3 to 0.15
   bDZF                                         Run 13:
                          0.1
733                                                                                    790
                                                          bZCF decreased from 0.03 to 0.015
                                              Run 14:
   dZF                     0.1
734                                                                                    791
   bSSCN                                        Run 15:         decreased from 0.03 to 0.015
                          0.3
                                                          bDB decreased from 0.1 to 0.05
   bZCF                                         Run 16:
                          0.03
735                                                                                    792
                                                          aZ and aB decreased from 0.15 to 0.075
                                              Run 17:
   bDCF                     0.03
736                                                                                    793
                                                          aD in the freshwater zone increased from 0 to 0.05
                                              Run 18
   bDB                     0.1
737                                                                                    794
                                                                      À1            À1
                                                          bDZ increased to 0.1 day (run 19) and 0.05 day
   bDZ                                         Run 19:
                          0.05
738                                                                                    795
   aB                                                      (run 19a, open circles)
                          0.15 (¼0 in freshwater reaches)
739                                                        aD increased to 0.15 in the saline region and 0.05 in 796
                                              Run 20:
   aD                      0.05 (¼0 in freshwater reaches)
                                                          the freshwater region
   aCF                     0.05 (¼0 in freshwater reaches)
740                                                                                    797
                                                          bPCF increased to 0.1; az and aB increased to 0.15
   aZ                                          Run 21:
                          0.05 (¼0 in freshwater reaches)
741                                                                                    798


                              YECSS1994_proof Š 12 July 2006 Š 7/12
                                 ARTICLE IN PRESS
                                         +  MODEL

   8                     E. Wolanski et al. / Estuarine, Coastal and Shelf Science xx (2006) 1e12

799                                                                                   856
800                                                                                   857
801                                                                                   858
802                                                                                   859
803                                                                                   860
804                                                                                   861
805                                                                                   862
806                                                                                   863
807                                                                                   864
808                                                                                   865
809                                                                                   866




                                                      F
810                                                                                   867
811                                                                                   868




                                                 OO
812                                                                                   869
813                                                                                   870
814                                                                                   871
815                                                                                   872
816                                                                                   873




                                            PR
817                                                                                   874
818                                                                                   875
819                                                                                   876
820                                                                                   877
821                                                                                   878
822                                                                                   879
                                       ED
823                                                                                   880
824                                                                                   881
825                                                                                   882
826                                                                                   883
                                   CT

827                                                                                   884
828                                                                                   885
829                                                                                   886
830                                                                                   887
                             E



831                                                                                   888
832                                                                                   889
                            RR




833                                                                                   890
834                                                                                   891
835                                                                                   892
836                                                                                   893
837                                                                                   894
                       CO




838                                                                                   895
839                                                                                   896
840                                                                                   897
841                                                                                   898
842                                                                                   899
                  UN




843                                                                                   900
844                                                                                   901
845                                                                                   902
   Fig. 6. Along-channel distribution of predicted variables in the Guadiana Estuary for various sensitivity runs shown as numbers (see Table 2). (a) Phytoplankton
   biomass (Chl a), (b) zooplankton biomass, (c) zooplankton (cont), (d) zooplanktivorous fish biomass, (e) carnivorous/omnivorous fish biomass, and (f) detritus
846                                                                                   903
   biomass. To convert biomass to concentration, see Fig. 5 and for Chl a 3.5e7.8 mg lÀ1.
847                                                                                   904
848                                                                                   905
849                                                                                   906
850                                                                                   907
     In the model carnivorous/omnivorous fish is measurably             reaches of the estuary and the model suggests that this fish
851                                                                                   908
   sensitive only to dCF (the natural death rate of carnivorous/om-         is highly vulnerable to a salinity increase, as a result of reduc-
852                                                                                   909
   nivorous fish; case 10, Fig. 6e). The model suggests that no            tion in river inflow. The model also suggests that the lower es-
853                                                                                   910
   other parameter than the natural death rate significantly influ-          tuary has more detritus than it can consume, thus the
854                                                                                   911
   ences the omnivorous fish. These fishes are mainly freshwater            additional detritus from salt marshes is unimportant. In the up-
855                                                                                   912
   Barbus spp. These species are located mostly in the upper             per areas, detritus mainly originates from the decomposition of


                                YECSS1994_proof Š 12 July 2006 Š 8/12
                             ARTICLE IN PRESS
                                    +  MODEL

                     E. Wolanski et al. / Estuarine, Coastal and Shelf Science xx (2006) 1e12                       9

913                                                                                  970
   riparian vegetation, this source of detritus seems more impor-
914                                                                                  971
   tant in the middle and lower estuary (Fig. 6f).
915                                                                                  972
     The model sensitivity tests are useful because they show
916                                                                                  973
   that:
917                                                                                  974
918                                                                                  975
    1. the model appears robust because large, but reasonable,
919                                                                                  976
     changes in the parameters do not lead to instabilities
920                                                                                  977
     such as the destruction of trophic layers;
921                                                                                  978
    2. the biomass of organisms is directly affected by its con-
922                                                                                  979
     sumption of prey or being consumed by predators the
923                                                                                  980
     next level up in the food chain. Indirect effects across




                                                  F
924                                                                                  981
     two trophic levels are generally small; for instance if we
925                                                                                  982
     compare ZF from runs 1 and 5, i.e. there is no impact of




                                             OO
926                                                                                  983
     the death rate of phytoplankton on carnivorous fish.
927                                                                                  984
928                                                                                  985
929                                                                                  986
   3.2. Examples of management application of the model
930                                                                                  987




                                        PR
931                                                                                  988
     The ecological sub-model is also simple, though still real-
932                                                                                  989
   istic. It incorporates the dominant six state variables. The
933                                                                                  990
   model integrates physical, chemical and biological processes
934                                                                                  991
   in the estuary; it predicts the ecosystem health as determined      Fig. 7. Along-channel distribution of predicted phytoplankton (Chl a) biomass
                                        in the Guadiana Estuary for the standard run (‘as is’), for a doubling of nutrient
935                                                                                  992
   by the following variables: nutrients, suspended particulate
                                        concentration in the river (‘N Â 2’), and for the additional impact of removing
936                                                                                  993
                                   ED
   matter, phytoplankton, zooplankton, bivalves, zooplanktivo-
                                        the salt marshes (‘No marsh, N Â 2’) for a freshwater discharge equal to
937                                                                                  994
   rous fish and carnivorous/omnivorous fish. Thus the model is        2 m3 sÀ1. To convert biomass to concentration for Chl a 3.5e7.8 mg lÀ1.
938                                                                                  995
   simpler than a number of other models (e.g. Flindt and
939                                                                                  996
                                        Alqueva dam because their renewal and distribution depend
   Kamp-Nielsen, 1997 e this comprises 12 state variables)
940                                                                                  997
                                        on freshets.
   that are often too complex and unwieldy for practical applica-
                               CT

941                                                                                  998
                                          Moreover, the model can also be used for finding solutions
   tions, especially when data are unavailable or insufficient.
942                                                                                  999
                                        for practical existing environmental problems in the Guadiana
     The model can readily be used to test management sce-
943                                                                                 1000
                                        Estuary such as toxic algal blooms and eutrophication risk. After
   narios when querying the impact of developments and
944                                                                                 1001
                                        the dam construction the estuary reached a man-made quasi-
   disturbances to land-use and water-resources in the river
                          E



945                                                                                 1002
                                        steady state characterised by poor productivity and low biomass
   catchment. For instance, the model predicts (Fig. 7) the impact
946                                                                                 1003
                                        in all communities (Fig. 8). Indeed, the fluctuations in river dis-
   of doubling the nutrient concentration in the Guadiana River
                        RR




947                                                                                 1004
                                        charge e as freshets e as occurred historically, increased diver-
   as a result of irrigation farming downstream of the Alqueva
948                                                                                 1005
                                        sity and variability in plankton and nektonic communities
   dam. Such farming is indeed planned. The phytoplankton con-
949                                                                                 1006
                                        (Fig. 8bee), and promoted ecosystem dynamics. This model
   centration is predicted to increase, particularly in the phyto-
950                                                                                 1007
                                        prediction is supported by the observations of Roelke (2000)
   plankton maximum zone located in the upper reaches of the
951                                                                                 1008
                                        in the Nueces Delta, Texas. This ecosystem response to freshwa-
   estuary. This suggests that the system is becoming eutrophi-
                    CO




952                                                                                 1009
                                        ter discharge pulses can be used as a management solution for
   cated and the risk of toxic algae blooms has increased.
953                                                                                 1010
                                        toxic algal blooms or eutrophication in the Guadiana. In the
     The model can also predict the impact of the salt marshes
                                        Guadiana, the model suggests that increasing Qf to 50 m3 sÀ1
954                                                                                 1011
   being destroyed by developments. The model predictions for
955                                                                                 1012
                                        for 5 days will flush the estuary and promote the development
   phytoplankton are shown in Fig. 7. Clearly the risk of eutro-
956                                                                                 1013
                                        of a diverse phytoplankton and zooplankton communities.
   phication and of toxic algae blooms would be further
                UN




957                                                                                 1014
                                          The model is restricted to the estuary. It cannot predict im-
   increased.
958                                                                                 1015
                                        pacts on the coastal zone. Studies are needed to determine if
     The model was used to assess the influence on the estuarine
959                                                                                 1016
                                        longer-duration and possibly higher intensity freshets may
   ecosystem health of the Alqueva dam that in 2002e2003 sub-
960                                                                                 1017
                                        be needed to maintain coastal marine ecosystem health,
   stantially decreased the river discharge Qf (Fig. 8a). The pre-
961                                                                                 1018
                                                               ˜
                                        as suggested by Doornbos (1982), Quinones and Montes
   dictions (Fig. 8b, c) show that without the dam the system was
                                              ´
962                                                                                 1019
                                        (2001), Chıcharo et al. (2002) and Simier et al. (2004).
   highly variable during a freshwater pulse, while with the dam
963                                                                                 1020
                                          Thus the estuarine ecohydrology model is able to provide
   the system was at steady state. The predicted influence of the
964                                                                                 1021
                                        answers to a number of practical questions. These answers
   Alqueva dam is particularly dramatic for the carnivorous/om-
965                                                                                 1022
                                        must always be taken carefully because the model, like any
   nivorous fish (Fig. 8d, e) because without the dam the fish was
966                                                                                 1023
                                        ecosystem model, over-simplifies reality, and the data set is in-
   able to spread over much of the estuary for up to a month after
967                                                                                 1024
                                        adequate for a detailed calibration. In that sense, the model
   a freshet, while with the dam the fish is restricted to the upper-
968                                                                                 1025
                                        predictions are somewhere between quantitative and qualita-
   most region of the estuary. Zooplankton and zooplanktivorous
969                                                                                 1026
                                        tive. Detailed field studies are needed to better understand,
   fish also are predicted to decrease in the presence of the


                           YECSS1994_proof Š 12 July 2006 Š 9/12
                                  ARTICLE IN PRESS
                                          +  MODEL

    10                     E. Wolanski et al. / Estuarine, Coastal and Shelf Science xx (2006) 1e12

1027                                                                                    1084
1028                                                                                    1085
1029                                                                                    1086
1030                                                                                    1087
1031                                                                                    1088
1032                                                                                    1089
1033                                                                                    1090
1034                                                                                    1091
1035                                                                                    1092
1036                                                                                    1093
1037                                                                                    1094




                                                       F
1038                                                                                    1095
1039                                                                                    1096




                                                  OO
1040                                                                                    1097
1041                                                                                    1098
1042                                                                                    1099
1043                                                                                    1100
1044                                                                                    1101




                                             PR
1045                                                                                    1102
1046                                                                                    1103
1047                                                                                    1104
1048                                                                                    1105
1049                                                                                    1106
1050                                                                                    1107
                                        ED
1051                                                                                    1108
1052                                                                                    1109
1053                                                                                    1110
1054                                                                                    1111
                                   CT

1055                                                                                    1112
1056                                                                                    1113
1057                                                                                    1114
1058                                                                                    1115
                              E



1059                                                                                    1116
1060                                                                                    1117
                            RR




1061                                                                                    1118
1062                                                                                    1119
1063                                                                                    1120
1064                                                                                    1121
1065                                                                                    1122
                       CO




1066                                                                                    1123
1067                                                                                    1124
1068                                                                                    1125
1069                                                                                    1126
    Fig. 8. (a) Time series plot of the Guadiana River discharge entering the estuary in the dry season of 2003 in the presence of the Alqueva dam, and the predicted
1070                                                                                    1127
    river discharge if the dam had not been constructed (middle). Time series plot of the predicted distribution of phytoplankton biomass in the Guadiana Estuary in
                   UN




1071                                                                                    1128
    2003 (b) without and (c) with the Alqueva dam. Time series plot of the predicted distribution of carnivorous/omnivorous fish biomass in the Guadiana Estuary in
    2003 (d) without and (e) with the Alqueva dam. To convert biomass to concentration, see Figs. 5 and 6.
1072                                                                                    1129
1073                                                                                    1130
1074                                                                                    1131
    and hence better parameterise in the model, the various pro-            presently set as a constant, is probably varying seasonally
1075                                                                                    1132
    cesses driving the ecosystem. The model should be seen as             and possibly stochastically e data on this are missing and
1076                                                                                    1133
    a living model e it has been written using subroutines that            are needed. Also, as the new data become available, the model
1077                                                                                    1134
    are readily edited, so that the new knowledge on individual            should be improved by subdividing the phytoplankton com-
1078                                                                                    1135
    processes can readily be incorporated in the model. For the            partment into the main classes (Domingues et al., 2005).
1079                                                                                    1136
    model to remain a useful tool, it is suggested that its complex-           For science, the model provides a tool to enable the
1080                                                                                    1137
    ity should be increased only as fast as additional physical,            exchange of information between oceanographers, biologists,
1081                                                                                    1138
    chemical and biological processes can be quantified through             ecologists, engineers, sociologists, economists and water-
1082                                                                                    1139
    new field and laboratory studies. For example, the import              resources managers at regional and national government
1083                                                                                    1140
    rate a from salt marshes and riparian ecotones, which is              levels, and the community.


                                YECSS1994_proof Š 12 July 2006 Š 10/12
                              ARTICLE IN PRESS
                                    +  MODEL

                      E. Wolanski et al. / Estuarine, Coastal and Shelf Science xx (2006) 1e12                       11

1141                                                                                 1198
     It is hoped that the model can also be useful for manage-       References
1142                                                                                 1199
    ment. The model shows that it is possible to predict e within
1143                                                                                 1200
    likely error bounds provided by the sensitivity tests e the con-     Ackroyd, D.R., Bale, A.J., Howland, R.J.M., Knox, S., Millward, G.E.,
                                           Morris, A.W., 1986. Distributions and behaviour of dissolved Cu, Zn
1144                                                                                 1201
    sequences on the estuary ecosystem health of human activities
                                           and Mn in the Tamar estuary. Estuarine, Coastal and Shelf Science 23,
1145                                                                                 1202
    throughout the river catchment. The model does show that, to          621e624.
1146                                                                                 1203
    maintain the ecosystem services provided by the estuary, inte-                              ´
                                         Alveirinho, J.M.A., Gonzalez, R., Ferreira, O., 2004. Natural versus anthropic
1147                                                                                 1204
    grated coastal management needs to take the whole river            causes in variations of sand export from river basins: an example from the
1148                                                                                 1205
    catchment as the fundamental planning unit. It is necessary          Guadiana river mouth (Southwestern Iberia). Polish Geological Institute
                                           Special Papers 11, 95e102.
1149                                                                                 1206
    to bring together land-use managers, water-resources man-
                                         Balls, P.W., 1994. Nutrient inputs to estuaries from nine Scottish east coast
1150                                                                                 1207
    agers, and coastal and fisheries managers. The model offers           rivers: influence of estuarine processes on inputs to the North sea. Estua-
1151                                                                                 1208
    thus a tool for using ecohydrology as a holistic approach to          rine, Coastal and Shelf Science 39, 329e352.




                                                   F
1152                                                                                 1209
    the management of rivers, estuaries and coastal zones within          ´
                                         Bille, R., Mermet, L., 2002. Integrated coastal management at the regional
1153                                                                                 1210
    entire river catchments.                            level: lessons from Toliary, Madagascar. Ocean and Coastal Management




                                             OO
                                           45, 41e58.
1154                                                                                 1211
                                         Boorman, L.A., Hazelden, J.H., Loveland, P.J., Wells, J.G., 1994a. Compara-
1155                                                                                 1212
                                           tive relationships between primary productivity and organic and nutrient
    4. Conclusions
1156                                                                                 1213
                                           fluxes in four salt marshes. In: Mitsch, W.J. (Ed.), Global Wetlands. Old
1157                                                                                 1214
                                           World and New. Elsevier, Amsterdam, pp. 181e189.
      The ecohydrology model is original in that it links physical,
1158                                                                                 1215
                                         Boorman, L.A., Hazelden, J., Andrews, R., Wells, J.G., 1994b. Organic and
    chemical and biological processes over the entire estuary for




                                         PR
                                           nutrient fluxes in four north-west European salt marshes. In: Dyer, K.R.,
1159                                                                                 1216
    the entire food web as a function of catchment output and           Orth, R.J. (Eds.), Changes in Fluxes in Estuaries: Implications from Sci-
1160                                                                                 1217
                                           ence to Management. Olsen and Olsen, Fredensborg, pp. 243e248.
    the oceanic open boundary condition. Despite the fact that
1161                                                                                 1218
                                         Brauer, F., Castillo-Chavez, C., 2001. Mathematical Models in Population Bi-
    a number of simplifications are made, the model is encourag-
1162                                                                                 1219
                                           ology and Epidemiology. Springer, Berlin, 416 pp.
    ing in that it reproduces satisfactorily the observations in
1163                                                                                 1220
                                          ´        ´
                                         Chıcharo, L., Chıcharo, M.A., Esteves, E., Andrade, P., Morais, P., 2002. Ef-
    2001e2003. These data are still sparse and the model may            fects of alterations in fresh water supply on the abundance and distribution
1164                                                                                 1221
                                   ED
    need improvements as additional data become available.             of Engraulis encrasicolus in the Guadiana Estuary and adjacent coastal
1165                                                                                 1222
                                           areas of south Portugal. Journal Ecohydrology and Hydrobiology 1,
      The model can readily be used to assess future impact on
1166                                                                                 1223
                                           195e200.
    the Guadiana Estuary ecosystem health caused by urbanisation
1167                                                                                 1224
                                         Domingues, R.B., Barbosa, A., Galv~o, H., 2005. Nutrients, light and phyto-
                                                             a
    or other factors that reduce the salt marsh area, by an increase
1168                                                                                 1225
                                           plankton succession in a temperate estuary (the Guadiana, south-western
                               CT

    in nutrient loads as a result of changes in agriculture practices       Iberia). Estuarine, Coastal and Shelf Science 64, 249e260.
1169                                                                                 1226
    in the catchment area due to increase in water availability by      Doornbos, G., 1982. Changes in the fish fauna of the former Grevelingen es-
1170                                                                                 1227
                                           tuary, before and after the closure in 1971. Hydrobiological Bulletin 16,
    the Alqueva dam, by extreme high freshwater discharges, e.g.
1171                                                                                 1228
                                           279e283.
    due to release of high volume of water storage in the dam, and
1172                                                                                 1229
                                         Edwards, A.M., 2001. Adding detritus to a nutrientephytoplanktone
    by the introduction of exotic species.
                          E



1173                                                                                 1230
                                           zooplankton model: a dynamical-systems approach. Journal of Plankton
      The model can also be used to predict the efficiency of re-         Research 23, 389e413.
1174                                                                                 1231
    medial measures, such as creating wetlands, creating freshets       Erzini, K., 2005. Trends in NE Atlantic landings (southern Portugal): identify-
                         RR




1175                                                                                 1232
                                           ing the relative importance of fisheries and environmental variables.
    by releasing water from the Alqueva dam, managing bivalve
1176                                                                                 1233
                                           Fisheries Oceanography 14, 195e209.
    species in the freshwater part of the estuary, and removing nu-
1177                                                                                 1234
                                         Esteves, E., Pina, T., Chicharo, M.A., Andrade, J.P., 2000. The distribution of
    trients from the river.
1178                                                                                 1235
                                           estuarine fish larvae: nutritional condition and co-occurrence with preda-
                                           tors and prey. Acta Oecologica 21 (3), 1e13.
1179                                                                                 1236
                    CO




                                         Flameling, I.A., Kromkamp, J., 1994. Responses of respiration and photosyn-
1180                                                                                 1237
    Acknowledgements                                thesis of Scenedesmus protuberans (Fritsch) to gradual and steep salinity
1181                                                                                 1238
                                           increases. Journal of Plankton Research 16, 1781e1791.
1182                                                                                 1239
                                         Flindt, M.R., Kamp-Nielsen, L., 1997. Modelling of an estuarine eutrophica-
     It is a pleasure to thank Philippe Pypaert and UNESCO e
1183                                                                                 1240
                                           tion gradient. Ecological Modeling 102, 143e153.
    ROSTE for supporting the development of this model through
                                         Fischer, H.B., List, E.Y., Koh, R.C.Y., Imberger, J., Brooks, N.H., 1979. Mix-
1184                                                                                 1241
    contract No. 875.767.4 in estuarine and coastal zone ecohydrol-
                UN




                                           ing in Inland and Coastal Waters. Academic Press, New York, 483 pp.
1185                                                                                 1242
    ogy. Also thanks are due to the University of Algarve for provid-     Fortunato, A.B., Oliviera, A., Alves, E.T., 2002. Circulation and salinity intru-
1186                                                                                 1243
    ing logistical support. The collection of the biological data was       sion in the Guadiana Estuary. Thalassas 18, 43e65.
1187                                                                                 1244
                                                                    ´
                                         Gonzalez, J.A.M., 1995. Sedimentologia del estuario del Rio Guadiana (SO
    made possible by the financial support of the projects ‘Effects of
1188                                                                                 1245
                                                               ´
                                           Portugal). CEP. Biblioteca Universitaria, Universidade de Huelva.
    River Flow changes on the fish communities of the Douro, Tejo
                                         Goosen, N.K., van Rijswijk, P., Brockmann, U., 1995. Comparison of hetero-
1189                                                                                 1246
    and Guadiana Estuaries and coastal areas: ecological and socio-        trophic bacterial production rates in early spring in the turbid estuaries of
1190                                                                                 1247
    economic predictions (ERIC) (FCT/P/MAR/15263/1999)’,              the Scheldt and the Elbe. Hydrobiologia 311, 31e42.
1191                                                                                 1248
    ‘General characterisation of the Guadiana Estuary ecosystem        Haward, M., 1996. Institutional framework for Australian ocean and coastal
1192                                                                                 1249
                                           management. Ocean and Coastal Management 33, 19e39.
    (FCT/P/15 REG/II/6/96)’, ‘Valorization of Aquatic resources
1193                                                                                 1250
                                         Hilborn, R., Mangel, M., 1997. The Ecological Detective. Confronting Models
    of the Guadiana Estuary (Portugal) (Feder/PPDR/CCRA/ODI-
                                           with Data. Princeton University Press, Princeton, 315 pp.
1194                                                                                 1251
    ANA)’, and the PhD scholarship of P. Morais ‘Engraulis encra-       Humston, R., Ault, J.S., Lutcavage, M., Olson, D.B., 2000. Schooling and mi-
1195                                                                                 1252
    sicolus population dynamics in the Guadiana Estuary and            gration of large pelagic fishes relative to environmental cues. Fisheries
1196                                                                                 1253
    adjacent coastal area (SFRH/BD/5187/2001)’.                  Oceanography 9, 136e146.
1197                                                                                 1254


                           YECSS1994_proof Š 12 July 2006 Š 11/12
                                  ARTICLE IN PRESS
                                           +  MODEL

    12                     E. Wolanski et al. / Estuarine, Coastal and Shelf Science xx (2006) 1e12

1255                                                                                      1289
    Jorgensen, S.E., Bendoricchio, G., 2001. Fundamentals of Ecological Model-     Roelke, D.L., 2000. Copepod food quality threshold as a mechanism influenc-
1256                                                                                      1290
      ling. Elsevier, 530 pp.                              ing phytoplankton succession and accumulation of biomass, and secondary
1257                                                                                      1291
    Kibirige, I.R., Perissinotto, R., Nozais, C., 2002. Alternative food sources      productivity: a modelling study with management implications. Ecological
      of zooplankton in a temporarily-open estuary: evidence from d13C and
1258                                                                                      1292
                                               Modelling 134, 245e274.
      d15N. Journal of Plankton Research 24, 1089e1095.
1259                                                                                      1293
                                              Salomons, W., Forstner, U., 1984. Metals in the Hydrocycle. Springer-Verlag,
1260                                                                                      1294
    Knox, G.A., 1986. Estuarine Ecosystems: A Systems Approach, vol. II. CRC        Berlin, 349 pp.
1261                                                                                      1295
      Press, Florida, 230 pp.                             Simenstad, C.A., Morgan, C.A., Cordell, J.R., Baross, J.A., 1994. Flux, passive
1262                                                                                      1296
    Kot, M., 2001. Elements of Mathematical Ecology. Cambridge University         retention, and active residence of zooplankton in Columbia river estuarine
1263                                                                                      1297
      Press, Cambridge, 464 pp.                             turbidity maxima. In: Dyer, J., Orth, M. (Eds.), Changes in Fluxes in
1264                                                                                      1298
    Lau, M., 2005. Integrated coastal zone management in the People’s Republic       Estuaries: Implications from Science to Management. University of
1265                                                                                      1299
      of China e an assessment of structural impacts on decision-making         Plymouth, pp. 473e482 (ECSA22/ERF Symposium).
1266                                                                                      1300
      processes. Ocean and Coastal Management 48, 115e159.              Simier, M., Blanc, L., Aliaume, C., Diouf, P.S., Albaret, J.J., 2004. Spatial and
1267                                                                                      1301
    Lefeuvre, J.C., 1996. Effects of environmental change on European salt         temporal structure of fish assemblages in an ‘‘inverse estuary’’, the Sine




                                                       F
1268                                                                                      1302
      marshes. In: Structure, Functioning and Exchange Potentialities with        Saloum system. Estuarine, Coastal and Shelf Science 59, 69e86.
                                                                                     ´
1269                                                                                      1303
      Marine Coastal Waters, vols. 1e6. University of Rennes, France.         Tagliani, P.R.A., Landazuri, H., Reis, E.G., Tagliani, C.R., Asmus, M.L., San-
1270                                                                                      1304
    Lindeboom, H., 2002. The coastal zone: an ecosystem under pressure. In:        chez-Arcilla, A., 2003. Integrated coastal zone management in the Patos




                                                  OO
1271                                                                                      1305
      Field, J.G., Hempel, G., Summerhayes, C.P. (Eds.), Oceans 2020: Science,      Lagoon estuary: perspectives in context of developing country. Ocean
1272                                                                                      1306
      Trends, and the Challenge of Sustainability. Island Press, Washington,       and Coastal Management 46, 807e822.
1273                                                                                      1307
      pp. 49e84, 365 pp.                               Thomann, R.V., 1980. Deterministic and statistical models of chemical fate in
1274                                                                                      1308
    Michel, D., 1980. Synthese des donnes physiques mesures dans le Rio Guadi-       aquatic systems. In: Levin, S.A., Hallam, T.G., Gross, L.J. (Eds.), Applied
1275                                                                                      1309
      ana. Evaluation de l’intrusion saline dans l’estuaire. PhD thesis, Labora-     Mathematical Ecology. Springer-Verlag, Berlin, pp. 322e351, 491 pp.
                       ´
1276                                                                                      1310
      toire d’oceanographie, Universite de Bruxelles.                 Uncles, R.J., Stephens, J.A., Smith, R.E., 2002. The dependence of estuarine




                                              PR
1277                                                                                      1311
    Nixon, S.W., 2003. Replacing the Nile: are anthropogenic nutrients providing      turbidity on tidal intrusion length, tidal range and residence time. Conti-
1278                                                                                      1312
      the fertility once brought to the Mediterranean by a great river? Ambio 32,    nental Shelf Research 22, 1835e1856.
1279                                                                                      1313
      30e39.                                     Wolanski, E., Doherty, P., Carleton, J., 1997. Directional swimming of fish
1280                                                                                      1314
    Pickaver, A.H., Gilbert, C., Breton, F., 2004. An indicator set to measure the     larvae determines connectivity of fish populations on the Great Barrier
1281                                                                                      1315
      progress in the implementation of integrated coastal zone management in      reef. Naturwissenschaften 84, 262e268.
                                                                ´
1282                                                                                      1316
      Europe. Ocean and Coastal Management 47, 449e462.                Wolanski, E., Boorman, L.A., Chıcharo, L., Langlois-Saliou, E., Lara, R.,
                                        ED
    Pinto, G.V., 2000. Caracterizac~o Dos Bancos Naturais De Bivalves Com
1283                                                                                      1317
                     ¸a                          Plater, A.J., Uncles, R.J., Zalewski, M., 2004. Ecohydrology as a new
                      ´
1284                                                                                      1318
      Interesse Comercial No Estuario Do Guadiana. Tese de licenciatura         tool for sustainable management of estuaries and coastal waters. Wetlands
1285                                                                                      1319
      Biologia Marinha, Universidade do Algarve.                     Ecology and Management 12, 235e276.
1286                                                                                      1320
      ˜
    Quinones, R.A., Montes, R.M., 2001. Relationship between freshwater input      Zalewski, M., 2002. Ecohydrology e the use of ecological and hydrological
1287                                                                                      1321
      to the coastal zone and historical landing of the benthic/demersal fish in     processes for sustainable management of water-resources. Hydrological
                                    CT

1288                                                                                      1322
      Central-South Chile. Fisheries Oceanography 10, 311e328.              Sciences Bulletin 47, 823e832.
                              E
                             RR
                        CO
                   UN




                                 YECSS1994_proof Š 12 July 2006 Š 12/12
by Elise Grane last modified 27-10-2006 18:13
 

Built with Plone