Personal tools
Home » Working Groups » Valuation of Coastal Habitats » Review of Social Literature as of 1/26/07 » Mangroves as fish habitat: 50 years of field studies
Navigation
Log in


Forgot your password?
 
Document Actions

Mangroves as fish habitat: 50 years of field studies

                         MARINE ECOLOGY PROGRESS SERIES
   Vol. 318: 1–18, 2006                                      Published August 3
                             Mar Ecol Prog Ser


                                                     OPEN
                                                      PEN
                                                     ACCESS
                                                      CCESS
FEATURE ARTICLE: REVIEW


Mangroves as fish habitat: 50 years of field studies
                    Craig H. Faunce1, 3,*, Joseph E. Serafy1, 2
 1
  Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami,
                 4600 Rickenbacker Causeway, Miami, Florida 33149, USA
2
 Southeast Fisheries Science Center, National Marine Fisheries Service, 75 Virginia Beach Drive, Miami, Florida 33149, USA
     3
     Present address: Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute,
          Tequesta Field Laboratory, 19100 SE Federal Highway, Tequesta, Florida 33469, USA




ABSTRACT: Mangroves dominate undisturbed nat-
ural shorelines of many sub-tropical and tropical
regions, yet their utilization by fishes is poorly
understood. To provide the first comprehensive list
of empirical field studies for comparative and ref-
erence purposes, we assembled and quantified
aspects of 111 mangrove-fish surveys published
between 1955 and 2005. Differences in the location,
purpose, methodology, data gathered, and analyses
performed among studies have resulted in a frag-
mented literature making cross-study comparisons
difficult, at best. Although the number of published
studies has increased over time, a geographical
bias in the literature has persisted towards studies
performed in the USA and Australia, and against
studies performed in Southeast Asia and West
Africa. The typical survey design has examined
<10 fixed locations on a monthly or bimonthly basis
for a period of less than 2 yr. Water temperature
and salinity measurements have been the most
reported habitat variables; others, such as structural
and landscape measures, continue to be rare.
Moreover, the focus to date has been on identifying        Faunce & Serafy review mangrove fish studies, focusing on
                                 sampling methodology, and on the types of fish and habitat
assemblage-level patterns of fish use, with very few
                                 data reported. While most studies have addressed spatio-
studies providing species-specific estimates of
                                 temporal patterns in fish assemblage structure, species-
abundance, growth, mortality, and secondary pro-
                                 specific estimates of fish mortality, growth and secondary
duction. Unless future studies strive towards ob-
                                 production are still required for appraisal of the importance
taining such estimates, gauging the importance of         of mangroves as fish habitat.
mangroves as fish habitat and their broader contri-                            Photo: Jiangang Luo
bution to ecosystem diversity and production will
remain elusive.
                                            INTRODUCTION
KEY WORDS: Fishes · Essential fish habitat · Man-
                                  Mangrove wetlands are a dominant feature of undis-
groves · Nursery · Review
                                 turbed tropical and subtropical shorelines around the
       Resale or republication not permitted without
                                 globe. Throughout their range, however, these habi-
          written consent of the publisher



*Email: craig.faunce@myfwc.com                  © Inter-Research 2006 · www.int-res.com
2                     Mar Ecol Prog Ser 318: 1–18, 2006




tats are in a state of decline. Approximately one-third    words ‘mangrove(s)’ and/or ‘fish(es)’. Records were
of the world’s mangrove forests has been lost to coastal   selected from the earliest available time period (1971)
development over the past 50 yr (Alongi 2002). While     to January, 2005. The resulting list of over 500 publica-
there is general agreement that mangroves provide a      tions was reduced to relevant works according to 2
buffer against storm surges, reduce shoreline erosion     main criteria: (1) the study must have been published
and turbidity, absorb and transform nutrients, and are    in readily available outlet (i.e. in the ‘primary litera-
inhabited by a variety of organisms, opinions vary as to   ture’); and (2) each publication must have contained a
the importance of mangrove habitats to fishes and, by     field-based survey of the ichthyofauna that was con-
extension, to offshore fisheries (Thollot & Kulbicki     ducted within a natural mangrove system. Second, the
1988, Blaber et al. 1989, Thollot 1992, Nagelkerken et    Science Citation Index (Web of Science; http://isi5.
al. 2001). For example, the sub-tidal prop-root habitats   newisiknowledge.com) was used to identify articles
of mangroves are often cited as nurseries for fishes of    that cited works from our reduced ASFA list. Again,
economic importance. Today, the protection of man-      any additional publications were vetted according to
groves worldwide is based almost entirely on their      the selection criteria above. Third, articles from
purported importance to fisheries and/or a number of     the authors’ personal libraries and those introduced
rare and endangered species (Snedaker 1989, Baran &      through peer review (of this paper) were added. The
Hambrey 1998). However, because the same man-         references cited in each relevant article were exam-
grove species can often occur under marine, estuarine,    ined for new items and this process was continued
and freshwater conditions, a wide variety of fish       until no additional publications emerged.
assemblages can be found among their inundated          Study locations were grouped into 5 geographic
prop-roots (hereafter termed ‘mangrove habitats’). As     regions following the World Mangrove Atlas (Spalding
such, mangrove habitats likely play a variety of roles in   et al. 1997): (1) South and Southeast Asia (Pakistan to
the lives of associated fishes; feeding areas for some    the west, China and Japan to the northeast, including
species or life stages, daytime refugia for others, nurs-   Indonesia), (2) Australasia (Australia, Papua New
ery and/or nesting areas for yet more. This situation     Guinea, New Zealand, and the South Pacific islands),
suggests that questions regarding the contribution of a    (3) the Americas (north, central, and south), (4) West
given mangrove habitat to the diversity, productivity     Africa, and (5) East Africa and the Middle East (Iran to
and stability of broader fish communities (and their     South Africa eastwards, including the islands in the
exploited components) must be carefully qualified, or,    Indian Ocean). Using the selection (foraging) ratio of
in some cases, may be premature.               Savage (1931), geographical bias in the literature was
  The purpose of this paper is to address some of the    expressed as the proportion of total studies realized
most basic questions regarding the body of literature     per region relative to the area of mangrove coverage
on mangrove fishes that has been published over the      within each region (Manly et al. 1993).
past 5 decades. These questions include: How many        The study purpose, methodology, data gathered, and
field studies have been conducted, why and where       analyses performed were extracted and tabulated
were they performed, and what techniques were used?      using vote-counting procedures, where ‘present’ was
What types of measurements have been made of the       given a value of 1 and ‘absent’ was given a value of
fish assemblages, their component species and their      0. Data were expressed as proportions of the total
habitats? Is there sufficient basis for comparing assem-   number of votes per attribute. Study purposes included
blages of mangrove fishes with those associated with     identifying spatial or temporal patterns, generating
other, structurally-complex habitats, such as seagrass    species lists, identifying explanatory variables, biogeo-
beds and coral reefs? The answers to these questions     graphic comparisons, restoration, water management,
are pertinent to researchers about to embark on new      and gear evaluations. Methodologies included the
studies, as well as to those making efforts to balance    sampling design (fixed, random, haphazard, or vari-
natural resource protection with pressing socio-eco-     ous), sampling frequency (daily, weekly, fortnightly,
nomic considerations.                     monthly, bimonthly, quarterly, seasonally, semi-annu-
                               ally) sampling duration, and gear type. Gear types were
                               classified according to Rozas & Minello (1997) and
                               included entanglement gear (gill or trammel nets),
           METHODS
                               towed nets (trawls, seines), passive samplers (fyke
 Publications for this review were selected from 3      nets, flume nets, rotenone-used with or without nets,
databases. First, a search of the Aquatic Sciences      fish traps, e.g. breder, plankton), and ‘enclosure sam-
and Fisheries Abstracts (ASFA) electronic database      plers’ (block or drop nets, drop traps, and cast nets).
was conducted (Cambridge Scientific Abstracts; www.      Visual surveys and angling were added as additional
csa.com) using keyword and title searches for the       gears. The type of mangrove forest sampled was noted
                                                                       3
                  Faunce & Serafy: Mangrove-fish literature review




using the classification scheme of Lugo & Snedaker                  mangrove coverage, it is encouraging that more litera-
(1974), which included fringing, riverine and/or basin                ture is emerging from this region where coastal fish as-
forest. The data gathered in each study included biotic                semblages are also relatively diverse (Blaber 2002).
and abiotic habitat metrics. Fish metrics included                  However, a literature void remains for the West Africa
groupings by family, maturation stage, residency sta-                 region — an area that is likely to continue to be under-
tus, trophic level, or diel habits as well as the type of               represented unless specifically targeted for study.
fish data gathered and analyzed. We classified the                  Interestingly, the first 2 studies of mangrove fishes
types of fish metric data reported in each study accord-               were conducted in the 2 regions that are least repre-
ing to the criteria recommended for determining                    sented today.
‘essential fish habitat’ (EFH) (USDOC 1996) which                    Although disproportionate, the spatial distribution of
included: presence/absence, frequency of occurrence,                 studies we examined covers much of the known global
percent composition, size, biomass (g), density (num-                 distribution of mangroves (Fig. 2). Specific areas that
ber/area), standing crop (g/area), growth and mortality                have received the most thorough study include Florida
rates, and rates of secondary production. Finally, the                (USA) and Moreton Bay (Australia). Similar dominance
focus of analyses (e.g. defining spatial and/or temporal               of studies from the USA and Australia in the literature
patterns, examining fish–habitat correlations) was tab-                has beset previous reviews of fishes occupying sea-
ulated and the type of statistical test(s) or data treat-               grass beds (Heck et al. 2003), mangroves (Sheridan &
ment(s) performed (similarity measures, analysis of                  Hays 2003), and studies of ontogenetic fish movements
variance, ordination, or regression) were recorded.                  (Gillanders et al. 2003). Regions outside US and Aus-
                                           tralian waters where data are particularly lacking
                                           include: (1) Pacific Panama; (2) Colombia; (3) Central
                                           Brazil; (4) the Red Sea; (5) Mozambique; (6) the Bay of
      RESULTS AND DISCUSSION
                                           Bengal and the Andaman Sea; and (7) Borneo (Fig. 2).
                                           However, there are several important cases where
       Chronology and geography
                                           fishes inhabiting tropical estuaries from these areas
  A total of 111 publications were examined from 104                 have been reported. In such cases, data summaries
independent field surveys of mangrove fishes pub-                   were made from multiple surveys of fishes that rarely
lished between 1955 and 2005 (Table 1). The earliest                 mentioned study objectives, methods, gear, or habi-
records of mangrove-associated fishes were species                  tat(s) sampled, making their inclusion here difficult, at
lists compiled by Inger (1955) and Boeseman (1963) as                 best. In Florida (USA), species lists of mangrove fishes
part of broad ecological inventories of forests in Borneo               were compiled from numerous studies by Odum et
(South and Southeast Asia region) and the Niger Delta                 al. (1982) and presented for tidal streams, estuarine
(West Africa region), respectively. Austin (1971) pro-                bays, and oceanic bays. Off Columbia, Alvarez León
vided the first inventory of mangrove fishes from                   & Blanco Racedo (1985) reviewed aspects of 31 studies
Puerto Rico (American region), and Day (1974) from                  conducted in the Cartagena Bay system. They pro-
Mozambique (i.e. the East Africa and Middle East                   vided an overall species list for the system, and sum-
region). Blaber (1980), and Blaber & Blaber
(1980) published the first of many works on          W Africa
                                S & SE Asia
                           100
assemblages of mangrove fishes from Aus-            E Africa
                         Cumulative number of publications




tralia (Australasian region).                 Australasia
                                Americas
  While the cumulative number of publica-      80
tions has grown steadily since the mid 1980s,
the sharpest increases occurred for the
regions of South and Southeast Asia and the      60
Americas (Fig. 1). Selection indices indicate
that the geographic distribution of studies
                           40
among regions has not been commensurate
with the proportion of the world’s mangrove
acreage that they contain (Table 2). Nearly      20
70% of studies have been conducted in either
the Americas or Australasia, and the South
                            0
and Southeast Asia and West Africa regions       1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
                                           Year
are clearly under-represented in the litera-
ture. Because South and Southeast Asia con- Fig. 1. Cumulative number of publications on mangrove fishes by each
tains the largest proportion of the world’s          geographic region from 1955 to 2005 (n = 111)
                                                                                              4

Table 1. Chronological list of surveys of mangrove fishes conducted during 1955 to 2005. Design codes: FX: fixed; HZ: haphazard; RM: random; VAR: various. SU: sample
unit; Prop. mangrove: proportion of sites that were within mangrove habitats. Frequency codes: BM: bimonthly; D: daily; F: fortnightly; M: monthly; S: seasonal; Q: quar-
terly; Var: various. Gear codes: A: anglers; B: block net; C: cast net; F: fyke net; G: gill or trammel net; P: plankton net; R: rotenone; S: seine net; T: trap; TP: trap or flume net;
             TW: trawl; V: visual surveys. Published studies with same letter [in brackets] are from the same fish survey. nr = not reported


Location                Region Design    SU    No. No.  Prop.     Fre- Duration    Gear    Basin Fringe Riverine     Source
                                   SU sites mangrove    quency (yr)

Dewhurst Bay, Borneo          SA     FX   Site   11  11    0.36    1     nr   A,C,R,S            x   Inger (1955)
Niger Delta              WA     nr  Region   4   4    1.00    Var         NR             x   Boseman (1963)
Western Puerto Rico          AM     FX  Estuary  8   8    1.00    Var         G,S        x    x   Austin (1971)
Ponggol Estuary, Singapore       SA     FX   Site   3   3    1.00    M     1.0    S             x   Thia-Eng (1973)
Morrumbene Estuary, Mozambique     EA     FX   Site   6   6    0.50    3          A,S        x    x   Day (1974)
Old Rhodes Key lagoon, USA       AM     FX   Site   6   6         M     0.4   A,T,V                Holm (1977)
Guadeloupe               AM     FX   Site   12  12    0.33    M     0.1   F,TP        x        Lasserre & Toffart [a] (1977)
Marco Island Estuary, USA       AM     FX   Site   11  11    0.00    M     4.1    TW                 Weinstein et al. (1977)
Huizache and Caimanero lagoons,    AM     FX   Site   5   5    0.80    M     1.3    C,S        x        Warburton (1978)
 Mexico
Mngazana Estuary, S Africa       EA     FX   Site    7   7    1.00    3         G,P,S        x    x   Branch & Grindley (1979)
Trinity Inlet System, Australia    AU     FX   Site   18  18    0.39    nr        B,G,P,S       x        Blaber (1980)
Moreton Bay, Australia         AU     FX   Site    4   4    0.50    M     1.0   B,P,S        x        Blaber & Blaber (1980)
Serpentine Creek, Australia      AU     FX   Site   10  10    0.00    F     1.2    TW                 Quinn (1980)
Tamil Nadu coast, India        SA     nr  Region   1             nr          P         x        Krishnamurthy &
                                                                            Prince Jeyaseelan (1981)
Jiquilisco Bay, El Salvador      AM     FX   Site   6  6    0.00    M    1.3    TW                 Phillips [b] (1981b)
Jiquilisco Bay, El Salvador      AM     FX   Site   6  6    0.00    M    1.3   C,G,TW                Phillips [b] (1981b)
Isle of Youth, Cuba          AM     FX   Site   4   4    1.00    S    1.0     V         x    x   Valdéz-Muñoz (1981)
Bahia de la paz, Mexico        AM     FX   Site   3  7    0.00    M    0.5    TW                 Martínez et al. (1982)
Papua New Guinea            AU     FX   Site   14  14    1.00    nr          R     x    x    x   Collette (1983)
Botany Bay, SE Australia        AU     FX   Site   1  1    1.00    BM    1.5    B,R             x   Bell et al. (1984)
Wairiki Creek, Fiji          AU     FX   Site   6   6    1.00    M    1.0     G             x   Lal (1984)
                                                                                              Mar Ecol Prog Ser 318: 1–18, 2006




Dampier region, NW Australia      AU     FX  Biotope   2  9    0.67    Q    1.0   G,R,S,V   x    x    x   Blaber et al. (1985)
Guadeloupe               AM     FX   Bay    2  12    0.33    Var    Var    TP         x        Louis et al. [a] (1985)
Papua New Guinea            AU     FX  Estuary   2   5    0.00    F    2.0    TW                 Quinn & Kojis (1985)
Phuket Island, Thailand        SA     FX   Site   4   4    0.50    M    1.6    P,TW        x    x   Janekarn & Boonruang (1986)
Laguna Joyuda, Puerto Rico       AM     FX   Site   5  5    0.00    M    1.0    TW                 Stoner (1986)
Elichi Creek, Nigeria, W Africa    WA     FX   Site   2  2    1.00    M     1.1     B             x   Wright (1986)
Pagbilao Bay, Phillipines       SA     FX   Site   6   6    1.00    M    1.5    G,TW             x   Pinto (1987)
Alligator Creek, Australia       AU     nr  Biotope  3.5  8    0.50    BM    1.2     S             x   Robertson & Duke [c] (1987)
Western Florida Bay, USA        AM     FX   Site   8   8    1.00    Var    Var   B,R,TW    x    x        Thayer et al. (1987)
Sinnamary river, French Guiana     AM     nr  Region   3             M    Var  C,G,TP,R,TW      x    x   Boujard & Beltran (1988)
Leanyer Swamp, N Australia       AU     FX   Site   2   2    1.00    F    0.5    R,T    x        x   Davis (1988)
Tudor Creek, Kenya, E Africa      EA     FX   Site   4   4    0.75    F    0.6    P,S        x        Little et al. [d] (1988b)
Tudor Creek, Kenya, E Africa      EA     FX   Site   5   5    0.60    nr    nr     P         x        Little et al. [d] (1988a)
Saint-Vincent Bay, New Caledonia    AU     nr  Biotope   3  121   0.01    Var    Var  F,G,TW,R,V       x    x   Thollot & Kulbicki (1988)
Teminos Lagoon, Mexico         AM     FX  Biotope   2   2    0.00    M     1.0    TW                 Yáñez-Arancibia et al. [e]
                                                                            (1988)
Embley Estuary, NE Australia      AU     FX  Biotope   5   6    0.83    Q    2.0  B,G,R,S,TW           x   Blaber et al. (1989)
                                    Table 1 (continued)

Location              Region Design   SU   No. No.  Prop.    Fre- Duration   Gear  Basin Fringe Riverine    Source
                               SU sites mangrove   quency (yr)

Nigerian Coast, W Africa      WA   FX   Estuary  4            nr       P,S   nr   nr   nr   Amadi et al. (1990)
Solomon Islands, W Pacific     AU   FX   Estuary  13  13   1.00    nr      B,G,R,S  x       x    Blaber & Milton (1990)
Selangor, Malaysia         SA   FX   Biotope  4  41   0.22    Var   Var  F,G,TW      x    x    Chong et al. [f] (1990)
Tecapan-Aqua Brava, Mexico     AM   FX    Site  15  15   1.00    M    1.0  S,TW               Flores-Verdugo et al. (1990)
Moreton Bay, E Australia      AU   FX    Site   1  3   1.00    M    1.2  B,G,S   x   x        Morton (1990)
Alligator Creek, Australia     AU   nr   Estuary  1           BM    1.2  G,S,TP   x       x    Robertson & Duke [c] (1990b)
Alligator Creek, Australia     AU   nr   Estuary  4           BM    1.2  G,S,TP   x       x    Robertson & Duke [c] (1990a)
Moreton Bay, Australia       AU   FX   Biotope  5  5    0.60    M    0.8   TW       x        Weng (1990)
Dubreka and Tabunsu estuary,
Guinea              WA    FX   Estuary  2            nr      A,C,G,TW nr    nr   nr   Boltachev (1991)
Cayo Collado, Puerto Rico     AM    FX    Site  8   8   1.00    S    0.2   V       x        Rooker & Dennis (1991)
Northern US Virgin Islands     AM    FX    Site  5   5   1.00    M    1.8   T,V       x        Boulon (1992)
La Parguera, Puerto Rico      AM    FX   Biotope  4   4   0.50    M    1.1    P       x        Dennis (1992)
Fort-de-France, Martinique     AM    FX    Site  8   8   1.00    Q    2.3   TP       x        Louis et al. [g] (1992)
Selangor, Malaysia         SA    FX   Biotope  3   41   0.22    Var   Var  F,G,TW      x    x    Sasekumar et al. [f] (1992)
Alligator Creek, Australia     AU   RM   Region  3   6   0.50    M    0.4  A,S,T      x        Sheaves (1992)
Rookery Bay, USA          AM   VAR   Biotope  3   30   0.33    Q    1.3   TP       x        Sheridan (1992)
Saint-Vincent Bay, New Caledonia  AU   VAR   Biotope  2  577   0.03    M    1.0 G,R,TM,TP,V     x        Thollot (1992)
Tanshui River, Taiwan       SA    FX    Site  3   3   0.00    M    2.8   B           x    Tzeng & Wang (1992)
Bonaire, Netherlands Antilles   AM    nr   Biotope  6            nr        V       x        van der Velde et al. [h] (1992)
Sabana-Camaguey, N Cuba      AM   RM   Region  3  63   1.00    1    nr    V       x        Claro & García-Arteaga (1993)
Phang-Nga Bay, Thailand      SA    FX    Site  1   1   0.00    M    1.2   TW               Janekarn (1993)
Ambergis Cay, Belize        AM    FX   Biotope  3   3   0.33    BM    1.0   TW           x    Sedberry & Carter (1993)
Terminos Lagoon, Mexico      AM    FX   Biotope  2  2    0.00    BM    1.2   TW               Yáñez-Arancibia et al. [e]
                                                                    (1993)
Gulf of Carpentaria, N Australia  AU   FX   Biotope  4            S    Var B,F,G,R,S,TW x   x    x    Blabler et al. (1994)
Clarence River, Australia     AU   FX    Site  18  18   0.28    Q    2.5   B,R      x        Pollard & Hannan (1994)
Gulf of Nicoya, Costa Rica     AM   FX    Site  3  3    1.00    M    0.9   G,S      x        Rojas et al. [i] (1994a)
Gulf of Nicoya, Costa Rica     AM   FX    Site  3  3    1.00    M    0.9   G,S      x        Rojas et al. [i] (1994b)
                                                                                    Faunce & Serafy: Mangrove-fish literature review




Celestum Lagoon, Mexico      AM   FX    Site  1   1   1.00    S    1.5   B,R   x   x        Vega-Cendejas et al. (1994)
Upper Tampa Bay, USA        AM   RM    Bay   2  24         M    2.9    T   x   x    x    Vose & Bell (1994)
Raby Bay, E Austalia        AU   FX   Biotope  2   7   0.43    M    1.1    S       x        Williamson et al. (1994)
Moreton Bay, E Australia      AU   FX   Biotope  2   6   0.33    M    2.0   S,TP   x   x        Laegdsgaard & Johnson (1995)
Fort-de-France, Martinique     AM   FX    Site  8   8   1.00    Q    2.3   TP       x        Louis et al. [g] (1995)
Placido Bayou, USA         AM   FX    Site  6   6   1.00    Var        B,S   x   x        Mullin (1995)
Lagos Lagoon, Nigeria       WA   FX    Site  2   2   0.50    M         S       x        Nwadukwe (1995)
Sao Luis, Brazil          AM   FX    Site  4   4   1.00    M    0.8   TP           x    Batista & Rego (1996)
Tin Can Bay, NE Austalia      AU   FX    Site   4  4   1.00    BM    2.2    B   x           Halliday & Young (1996)
Gazi Creek, Kenya, E Africa    EA   FX    Site  3   3   0.67    M    0.8    S       x        Kimani et al. (1996)
Negombo Estuary, W Sri Lanka    SA   FX    Site  6   4   1.00    M    2.1    S       x        Pinto & Punchihewa (1996)
Embley River, N Australia     AU   FX    Site  4   4   1.00    D,S   Var    B   x           Vance et al. (1996)
La Parguera, Puerto Rico      AM   RM   Biotope  3  43   0.21    nr        G,V      x        Acosta (1997)
Karachi, Pakistan         SA   FX    Site  2   2   0.50    F    0.9    C   nr   nr   nr   Atiqullah et al. (1997)
                                                                                    5
                                                                                   6

                                   Table 1 (continued)

Location            Region Design   SU   No. No.  Prop    Fre- Duration   Gear  Basin Fringe Riverine    Source
                             SU sites mangrove   quency (yr)

Tulear Lagoon, SW Madagascar  EA   FX    Site  1   1   1.00    M    1.0    G               Laroche et al. (1997)
Guaratuba, Brazil        AM   RM   Region  1   1   1.00    nr       C,S,TW              Chaves & Correa (1998)
Sao Luis, Brazil        AM   FX    Site  4   4   1.00    M    0.8   TP           x    Batista & Rego (1996)
Tin Can Bay, NE Australia    AU   FX    Site  4   4   1.00   BM    2.2    B   x           Halliday & Young (1996)
Gazi Creek, Kenya, E Africa   EA   FX    Site  3   3   0.67    M    0.8    S       x        Kimani et al. (1996)
Negombo Estuary, W Sri Lanka  SA   FX    Site  6   4   1.00    M    2.1    S       x        Pinto & Punchihewa (1996)
Embley River, N Australia    AU   FX    Site  4   4   1.00   D, S   Var    B   x           Vance et al. (1996)
La Parguera, Puerto Rico    AM   RM   Biotope  3   43   0.21    nr        G,V      x        Acosta (1997)
Karachi, Pakistan        SA   FX    Site  2   2   0.50    F    0.9    C   nr   nr   nr   Atiqullah et al. (1997)
Tulear Lagoon, SW Madagascar  EA   FX    Site  1   1   1.00    M    1.0    G               Laroche et al. (1997)
Guaratuba, Brazil        AM   RM   Region  1   1   1.00    nr       C,S,TW              Chaves & Correa (1998)
NE tropical Australia      AU   HZ   Region  4   12   1.00    Q    2.3    T       x        Sheaves (1998)
Yingluo Bay, China       SA   FX    Site   2   2   1.00    Q    1.0    B       x    x    He et al. (2001)
Guaratuba, Brazil        AM   RM   Region  1   1   1.00    M    2.9   TW               Chaves & Bouchereau (1999)
Bay of La Paz, Mexico      AM   FX    Site  1   1   1.00    nr         F           x    Gonzalez-Acosta et al. (1999)
N & S Taiwan          SA   FX   Region  6   6   1.00   BM    1.0    F           x    Kuo et al. (1999)
NE Florida Bay, USA       AM   FX    Bay   6   42   1.00    M    1.1   B,R,V  x   x        Ley et al. [j] (1999)
N Taiwan            SA   FX    Site   1   1   1.00    M    1.0    F           x    Lin & Shao (1999)
NE Florida Bay, USA       AM   FX    Site  4   24   1.00   BM    5.2   R,T   x           Lorenz (1999)
Pagbilao, Philippines      SA   FX    Site   4   4   1.00    D    0.0    B   x           Rönnbäck et al. (1999)
Curacao, Netherlands Antilles  AM   FX   Biotope  6   12   1.00   Var         V       x        Nagelkerken et al. [k] (2000a)
Curacao, Netherlands Antilles  AM   FX   Biotope  6   12   1.00   Var         V       x        Nagelkerken et al. (2000b)
Bonaire, Netherlands Antilles  AM   FX   Biotope  6   27   0.22    M    0.6    V       x        Nagelkerken et al. [h] (2000c)
Sine Saloum, Senegal      WA   FX    Site  3   6   1.00    M    0.2    F               Vidy (2000)
Guaratuba, Brazil        AM   RM   Region  1   1   1.00    nr       F,S,TW              Chaves & Vendel (2001)
NE Florida Bay, USA       AM   FX    Bay   6   17   1.00    M    1.1    V       x        Ley & McIvor [j] (2001)
Curacao, Netherlands Antilles  AM   FX    Bay   3   11   0.00   D, M   Var   S,V              Nagelkerken et al. (2001)
                                                                                   Mar Ecol Prog Ser 318: 1–18, 2006




St. Croix, US Virgin Islands  AM   HZ    Site  10  10   1.00    M    2.0   S,T      x        Tobias (2001)
Rio da Fazenda, Brazil     AM    nr   Region  3   3   0.33   BM    1.0   A,T,V      x        Uieda & Uieda (2001)
Sepetiba Bay, Brazil      AM   RM   Region  3  158   0.00    M    3.0   TW               Araujo et al. (2002)
Caete River Estuary, Brazil   AM   FX    Site  3   3   1.00    M    1.0   TP           x    Barletta-Bergan et al. (2002)
Curacao, Netherlands Antilles  AM   FX   Biotope  3   11   3.00    S    nr    V       x        Cocheret de la Morinière et al.
                                                                  [k] (2002)
Lower Volta, Ghana       WA   FX    Site  7   7   0.71    nr    nr   C,G,S      x    x    Dankwa & Gordon (2002)
Curacao, Netherlands Antilles  AM   FX   Biotope  8  17   0.71    S    1.0   V       x        Nagelkerken & van der Velde
                                                                  [k] (2002)
Eastern Caribbean        AM   FX   Biotope  3  23   0.00    Var   Var   V       x        Nagelkerken et al. (2002)
Bimini, Bahamas         AM   FX   Biotope  4   4   0.25    nr       B,S       x        Neuman & Gruber (2002)
Sikao Creek Estuary, Thailand  SA   FX    Site   6   6   0.67    Q    26.7  F,R,S   x   x    x    Tongnunui et al. [l] (2002)
Johor Strait, Malaysia     SA   FX    Site  4   4   0.25    M    1.5   S       x        Hajisamae & Chou (2003)
Sikao Creek, Thailand      SA   FX    Site   3   3   0.67    Q    2.4   S       x    x    Ikejima et al. [l] (2003)
Biscayne Bay, USA        AM   RM   Region   2  129   1.00    S    2.0   V       x        Serafy et al. (2003)
SE Everglades, USA       AM   FX    Site   3  12   1.00    BM    3.2   V           x    Faunce et al. (2004)
Rio Lagartos, Mexico      AM   FX    Site  28  28   0.00    Var   Var  S,TW               Vega-Cendejas & Santillana
                                                                  (2004)
Chwaka Bay, Tanzania      EA   FX   Biotope  5  5    0.40    Var   Var   S,V           x    Lugendo et al. (2005)
                                                                7
                   Faunce & Serafy: Mangrove-fish literature review




       Fig. 2. Location of studies of mangrove fishes used in the present review (coded by geographic region)


marized their data based on the number of species          fishes (21.7%) or identify explanatory variables for
belonging to various salinity regimes and trophic          observed utilization patterns (15.6%). Less than 10%
levels for Bahía de Cartagena, Ciénaga de Tesca, and         of studies were concerned with the remaining topics
Ciénaga Grande de Santa Marta. Similarly, Cervigón          (Fig. 3a). Most studies aimed to identify temporal pat-
(1985) used data from an earlier study and historical        terns, and typically achieved this goal through monthly
records to generate a list of fish species for the Ori-       sampling for a period of 0.5 to 1.5 yr (Fig. 3b,c). Sam-
noco estuary (Venezuela) according to salinity regime.        pling durations of more than 2 yr were uncommon
Finally, the ecology of the Itamaracá ecosystem (Brazil)       (< 5%) with the longest published survey spanning 5 yr
was summarized by Paranagua & Eskinazi-Leça (1985),         (Lorenz 1999). In addition, most studies sampled, or
who provided a family and species list of fishes. For        otherwise quantified, fishes at a small number of loca-
more complete summaries of fish studies conducted          tions. Only 4 studies sampled mangroves at more than
from large tropical estuarine systems, the reader          20 locations: Serafy et al. (2003) sampled 129 locations,
should consult the comprehensive works of Blaber           Claro & García-Arteaga (1993) sampled 63 locations,
(2000) and Yáñez-Arancibia (1985).                  Ley et al. (1999) sampled 42 locations, and Lorenz
                                   (1999) sampled 24 locations (Table 1). Fixed sampling
                                   designs were employed much more often (81%) than
                                   random-stratified (8.5%) or haphazard designs (1.8%)
            Study design
                                   or various other sampling designs (1.8%). In fixed- and
 Study design incorporates a study’s purpose with its        mixed-design surveys, the rationale for selecting site
methodology. Over half of the examined surveys of          locations was rarely provided.
mangrove fishes aimed to identify spatial and/or temp-         These results highlight some limitations with our
oral patterns of mangrove utilization, while a lesser        knowledge of mangrove habitat utilization by fishes.
                                   For example, if not selected remotely, or a priori, the
proportion were conducted to provide an inventory of

Table 2. Comparison of mangrove area and the number of published studies from within each geographic region. The selection
ratio (wi) of Savage (1931) was used to compare the proportion of studies to the proportion of mangrove area within each region


Region              Mangrove      Proportion of      Number of      Proportion of     wi
                 area (km2)      total area      total studies    total studies

Americas              49 096        0.271          53         0.477      1.762
Australasia            18 789        0.104          26         0.234      2.252
East Africa and Middle East    10 024        0.055           7         0.063      1.147
South and Southeast Asia      75 173        0.415          18         0.162      0.391
West Africa            27 995        0.155           7         0.063      0.407
Total               181 0770                   1110
8                                              Mar Ecol Prog Ser 318: 1–18, 2006




                                a) Purpose                   ment of what constitutes a ‘typical’ year, or of the
               0.6
                                                        extent of inter-annual variability in both the fish
               0.5
                                                        assemblages and their environment. While the sea-
                                                        sonal dynamics of mangrove use by fishes has received
               0.4
                                                        attention, only a few studies have focused on shorter
               0.3
                                                        temporal scales. In the future, researchers should bet-
                                                        ter describe how and why sampling locations were
               0.2
                                                        selected, and when possible include the rationale
               0.1
                                                        behind their sampling intensity/allocation decisions.
                                                         How fish samples have been acquired from man-
               0.0
                     In rns

                           y


                     eo ar.

                          hy


                           n


                            .

                           e
                                                        groves is of particular importance due, in part, to issues

                          gt
                         or




                         yp
                          io
                         v

                        ap




                         m
                        at
                        tte

                        nt




                        rt
                        y




                                                        of species- and size-selectivity. Indeed, one of the
                       gr

                       or
                       ve




                       er
                       or




                      ea
                      Pa




                      st

                     at
                     at




                     G
                    Re


                    W
                    an




                                                        major reasons mangroves have received relatively lit-
                    og
                  pl

                  Bi
                 Ex




                                                        tle attention as fish habitats is that it is inherently diffi-
                                                        cult to quantitatively sample fishes within them. Con-
                               b) Frequency
               0.5
                                                        sequently, our understanding of the role(s) that these
  Proportion of studies




                                                        habitats play in the lives of fishes has been hindered by
               0.4
                                                        the fact that the same sampling methods have rarely
                                                        been used from one study to the next. Over one-third
               0.3
                                                        of all studies we reviewed used towed gears, which
               0.2                                        is a consistent finding among geographic regions
                                                        (Fig. 4a,b). While towed nets can be effective in sea-
               0.1                                        grass beds, they are of little or no use within the dense,
                                                        rigid, entangled roots of mangrove trees. Use of pas-
               0.0
                    lly

                          y

                              y

                                  ly

                                       ly


                                             Va ly
                                                 us


                                                  d
                        al

                              l




                                                rte
                            th

                                th

                                      ht

                                                ht




                                                                                   a) Gears: type
                    ua




                                               rio
                       on

                            on

                                on

                                     ig

                                               ig



                                              po
                  nn




                                                                     0.35
                      as




                                   rtn

                                        rtn
                          -m

                              M




                                             re
                 i-a

                    Se




                                 Fo

                                      Fo
                        Bi




                                           ot
               m




                                                                     0.30
                                          N
                                     <
              Se




                                                                     0.25
                                c) Duration
              0.25                                                     0.20
                                                                     0.15
              0.20
                                                                     0.10
              0.15
                                                                     0.05
                                                         Proportion of studies




                                                                     0.00
              0.10
                                                                           ed


                                                                                ve


                                                                                      e

                                                                                      al


                                                                                               t


                                                                                                    s
                                                                                             en


                                                                                                   er
                                                                                     ur

                                                                                     su
                                                                                i
                                                                         w


                                                                              ss




                                                                                                  gl
                                                                                           m
                                                                                   os

                                                                                   Vi
                                                                         To




              0.05
                                                                                                 An
                                                                              Pa




                                                                                           le
                                                                                   cl




                                                                                          ng
                                                                                  En




                                                                                        ta
                                                                                       En




              0.00
                                                                              b) Gears: region
                   5

                        0

                           5

                               0

                                   5

                                        0
                                           3+

                                                  us

                                                   d
                  0.

                      1.

                          1.

                              2.

                                  2.

                                       3.




                                                 rte




                                                                      1.0
                                             rio
                                                po




                                                                                                  Anglers
                                            Va

                                              re
                                              ot




                                                                      0.8
                                              N




                                                                                                 Entanglement
Fig. 3. (a) Purpose, (b) sampling frequency, and (c) sampling
                                                                      0.6
duration (in yr) of studies of mangrove fishes. Var: variable;                                                                    Visual
   mgt: management. Note difference in y-axis scales
                                                                      0.4                          Enclosure
choice of sampling locations may be biased, which in                                                                        Passive
                                                                      0.2
turn can be reflected in the data gathered (Rozas &
                                                                                                  Towed
Minello 1997). In addition, the limited spatial extent                                           0.0
                                                                         AM    AU     EA   SA   WA
and/or small number of sites sampled in most studies
                                                                                   Region
may not be representative of a given area or region,
                                                        Fig. 4. The gear type used to collect fishes from mangrove
and thus may be of limited use to coastal resource
                                                        habitats (a) among studies, and (b) by geographic region. AM:
managers if they must determine the costs and benefits                             Americas; AU: Australasia; EA: East Africa and the Middle
of developing one mangrove area over another. Simi-                              East; SA: South and Southeast Asia; WA: West Africa. Note
larly, the lack of multi-year studies precludes assess-                                     difference in y-axis scales
                                                             9
                  Faunce & Serafy: Mangrove-fish literature review




sive gears has also been common (27% of studies).       coral reef environments (e.g. Lindeman & Snyder 1999,
Most passive gears are difficult to place in dense man-    Nagelkerken et al. 2000b, Russ et al. 2005). An impor-
grove prop-roots without constituting additional struc-    tant distinction between visual surveys and other
ture, and like towed gears are often actually employed    methods is that the former does not capture fishes, and
at the periphery of the mangrove shoreline. This con-     thus is advantageous for studying threatened or
sidered, one out of 5 purported studies of mangrove      endangered species. Limitations of visual surveys stem
fishes that we reviewed failed to sample within man-     from variations in visibility, size- and species-specific
grove habitat. This has undoubtedly produced unrep-      responses of fish to those performing the survey,
resentative data in specific cases, and has probably led   observer experience, recording errors, as well as safety
to unfounded conclusions about the nature and extent     concerns (Cheal & Thompson 1997, Thompson & Map-
of fish utilization of mangroves in general.         stone 1997, Ley et al. 1999). While precision varies by
  There are notable exceptions, however, where more     methodology (e.g. roving, timed, or belt transect, writ-
appropriate sampling techniques have been applied to     ten or audio recording media), accuracy problems can
quantitatively sample fish within the mangroves        be reduced by performing observer training and using
proper. These include enclosure, entanglement, and      a limited number of personnel (Bell et al. 1985, Greene
visual techniques, which have each been employed       & Alevizon 1989, St. John et al. 1990). Visual survey
with similar frequency (i.e. 11 to 13% of studies). A     techniques were used far more often in studies con-
common type of enclosure gear uses a fine mesh net to     ducted in the Americas (Caribbean), than in either
encompass a mangrove area and fishes are subse-        Australasia or East Africa, and were absent from South
quently removed with poison and/or a smaller net (e.g.    and Southeast Asia and West Africa (Fig. 4b).
Bell et al. 1984, Thayer et al. 1987, Blaber & Milton      Given the above, there is clearly no ‘best’ method for
1990). Such block netting can result in estimates of     sampling fishes within mangrove habitats. The optimal
both abundance and biomass per unit area (standing      method will vary according to study constraints and
crop), and is an especially effective method for collect-   have bias and precision that should be weighed in
ing small, cryptic fishes. However, sampling efficiency    accordance with the goals of the project. In studies that
is dependent on the clearing method used. Two draw-      focus on analyzing the entire assemblage, the applica-
backs of enclosure samplers are that they often involve    tion of multiple gear types has been used with success
both short- and long-term disturbance of the habitat     and is preferred (Blaber et al. 1985). With respect to
under study (e.g. prop-root and canopy removal), and     single gear studies, we agree with Rozas & Minello
are relatively labor intensive. In contrast, passive sam-   (1997) that enclosure samplers are superior for quanti-
plers such as fyke, flume, or channel nets do not       fying fishes in structurally-complex habitats, especially
greatly modify the mangrove habitat, but are limited to    in turbid waters, and add that visual surveys are par-
situations where tides are sufficient to drain the habitat  ticularly useful in clearer waters.
and effectively force fishes into these capture devices
(McIvor & Odum 1986). Most traps, like entanglement
gears, can be rapidly deployed and cause minimal                  Habitat metrics
habitat disturbance. These gears can also be effective
for catching relatively large (ca. 10 cm total length)     An historical summary of abiotic and biotic measures
mobile fishes often missed by other gears; however,      collected aids our present ability to assess the value of
there are size- and species-selectivity constraints. Size   mangroves as fish habitat. Unlike experimental studies
selectivity problems can be reduced by sampling with     that benefit from being able to isolate and manipulate
traps of different mesh sizes and openings, or by       specific variables for study, in the field it is difficult to
sampling with nets with multiple panels composed of      choose appropriate abiotic (habitat) factors to measure
different meshes (Sogard et al. 1989, Sheaves 1995).     since they are often autocorrelated with one another.
Unfortunately, like all passive samplers, only relative    While the appropriate environmental variables mea-
abundance or biomass, rather than density or biomass     sured in a study should differ depending on the goals
per unit area, can be estimated using traps and entan-    of the project and on local conditions, over half of the
glement nets. Finally, underwater visual fish census     habitat metrics recorded in the literature database con-
can be a rapid and effective technique for gathering     sisted of temperature and salinity measurements, and
data and making quantitative comparisons of fish dis-     this trend was observed across all geographic regions
tribution, abundance, and size-structure within and      (Fig. 5a,b). Certainly temperature is linked to broad
among habitat types. Visual fish census has been uti-     spatial patterns in the use of mangroves by fishes, as
lized in seagrass beds, mangroves, and hardbottom       more fish species are noted from tropical estuaries
communities, and has become the most accepted         than from sub-tropical estuaries, and a positive corre-
method for estimating fish abundance and diversity in     lation between temperature and overall assemblage
10                                           Mar Ecol Prog Ser 318: 1–18, 2006




                                                        b) Habitat metrics: region
                          a) Habitat metrics: type
               0.30                                    1.0
                                                                          pH
               0.25                                    0.8                    Structure
                                                                          Rain
               0.20
                                                     0.6                    DO
               0.15                                                         Turbidity
                                                     0.4                    Depth
               0.10
                                                                          Temperature
                                                     0.2
               0.05                                                         Salinity
   Proportion of studies




               0.00                                    0.0
                                                         AM  AU   EA   SA  WA
                      ity

                        p

                        h

                       ity

                                    DO


                                          in

                                              e
                                                pH
                                             ur
                      pt
                      m




                                       Ra
                     lin




                     id




                                           ct
                    Te

                    De




                                                              Region
                    rb
                  Sa




                                          ru
                   Tu




                                          St
                                                         d) Fish metrics: region
                            c) Fish metrics: type               1.0
               0.35
               0.30                                                        G/Z
                                                     0.8
                                                                         FO
               0.25
                                                                         Standing crop
                                                     0.6
               0.20                                                        Density
                                                                         Biomass
               0.15                                    0.4                   Size
                                                                         Percent
               0.10
                                                     0.2                   Presence
               0.05
                                                     0.0
               0.00
                                                         AM  AU   EA   SA  WA
                     ce

                          t
                            ze

                                s
                                   ity

                                       op

                                          FO

                                              /Z

                                                  n
                        en



                               as




                                                tio
                                             G
                            Si



                                  ns
                   en




                                      cr




                                                              Region
                       rc



                              om




                                                uc
                                 De
                  es

                     Pe




                                     ng




                                              od
                            Bi
                Pr




                                   di




                                             Pr
                                  an
                                 St




Fig. 5. Summary of (a,b) habitat and (c,d) fish metrics collected from mangroves (a,c) among studies and (b,d) by geographic
region. DO: Dissolved oxygen; FO: frequency of occurrence; G/Z: growth and/or mortality estimates; rain: rainfall; temp:
                  temperature. Geographic regions abbreviated as in Fig. 4


richness, diversity, and abundance has been noted by                            ture on mangrove fishes (Connell 1978, Leigh 1990).
several authors (Robertson & Duke 1987, Williamson                             However, there is scant evidence suggesting such
et al. 1994, Lin & Shao 1999). While seasonal and                             relationships may also hold for fishes inhabiting
diel changes in temperature are typically predictable,                           mangroves (Serafy et al. 2003). Although regime
changes in salinity within a mangrove habitat can be                            characterization requires that dynamic abiotic vari-
more dynamic. Salinity can either remain relatively                            ables are measured over longer periods of time than
stable throughout the year (e.g. along well-connected                           just on the day of fish sampling, few studies in the liter-
oceanic islands), exhibit seasonal changes resulting                            ature have examined fish-habitat relationships on
from fluvial runoff, or change dramatically as a result                          multiple time scales (Bell et al. 1984, Lorenz 1999,
of anthropogenic freshwater releases (Faunce et al.                            Faunce et al. 2004).
2004). In addition, observed fish patterns in mangrove                            As in the case for temporal scales, examination of
habitats may be correlated with: (1) water depth,                             multiple spatial scales may be integral to determining
where the habitat is temporally inundated (e.g.                              which fishes utilize mangrove habitats and why; yet
Robertson & Duke 1990a, Laegdsgaard & Johnson                               this has also been largely ignored in the literature on
1995); (2) turbidity, where sediment transport is (a)                           mangrove fishes. At the smallest scales, structural
high (e.g. Blaber 1980) or (b) in areas without large                           complexity may be important, but this was reported in
salinity fluxes; and (3) dissolved oxygen in areas                             less than 5% of studies. It is likely that few field-based
with poor water flow or located downstream of large                            studies measured and reported structural measure-
industrial or agricultural areas (e.g. Claro et al. 2001).                         ments because early attempts failed to find meaning-
  Abiotic regime (i.e. mean, range, and stability) may                          ful correlations with fish measures (Sheridan 1992,
be of more importance in structuring the assemblage                            Mullin 1995). Interestingly, experimental studies have
of mangrove fishes than ‘snapshot’ metrics collected                            demonstrated that the increased structural complexity
at the time of sampling. For example, a negative rela-                           of mangroves reduces the efficiency of predators (Pri-
tionship between environmental stability and species                            mavera 1997, Laegdsgaard & Johnson 2001). At larger
diversity has been well documented outside the litera-                           scales, many studies have sampled sites located at
                                                          11
                   Faunce & Serafy: Mangrove-fish literature review




various distances from features upstream (e.g. fresh      Duke 1990b), and no estimates of habitat-specific mor-
water) versus downstream (e.g. coral reefs). However,     tality or production have appeared in the literature.
distance values were reported in less than 10% of       Because such studies may have been specifically
studies, and in only 2 instances were they used in       focused on these biological metrics, it is possible that
analyses with fish metrics (Nagelkerken et al. 2000b,     such studies exist outside the realm of this review.
Hajisamae & Chou 2003). Such analyses can be per-       Other biotic factors such as larval supply, predation,
formed readily given the advances in global posi-       competition, and food supply are difficult to consis-
tioning satellites and geographic information system      tently and reliably measure, and we were unable to
technology (e.g. Kendall et al. 2003).             find studies that reported these measures in the litera-
                                ture on mangrove fishes.

           Fish metrics
                                            Data analyses
 Recently, several fish metrics have been reviewed
and ranked according to their usefulness for determin-      Having summarized where, when, and how fish data
ing the importance of fish habitats, including man-      have been collected from mangrove habitats, the ensu-
groves. In 1996, the US government mandated that all      ing discussion is concerned with what has been done
stock assessments include EFH provisions and con-       with them. Fish abundances were usually analyzed at
sider 4 levels of information (USDOC 1996). On a habi-     one of 3 levels: the entire assemblage, ‘dominant taxa’
tat-specific basis, these include fish presence-absence    (e.g. the 10 most abundant species grouped), or indi-
(Level 1), densities (Level 2), growth, reproduction,     vidual species. A measure of the entire assemblage
and survival rates (Level 3), and secondary production     (e.g. total fish density or biomass) was the most com-
rates (Level 4). A refined definition of ‘nursery habitat’   monly used level of analysis (52%), followed by the
emerged with a paper by Beck et al. (2001). They        analysis of dominant taxa (31.2%) and then individual
contend that a nursery habitat contains one or more of     species abundances (16.8%). As most studies aimed to
the following traits compared to other non-nursery       identify patterns of fish use, analyses were focused on
habitats: (1) greater densities of young fishes; (2) lower   examining temporal and spatial variation (Fig. 6a).
predation rates; (3) higher growth rates; and (4) more     Fish–habitat correlations were examined less often,
successful migration to subsequent habitats (Beck et      and were completely absent from the West African
al. 2001).                           region. Regardless of the focus, the type of data analy-
 In light of these developments, this literature review    sis conducted was typically in the form of simple
can be used to answer the question: What information      side-by-side comparisons (Fig. 6b). Similarity indices,
is available to assess the value of mangroves as fish     ANOVA, and ordination techniques were applied
habitat? Presence/absence information was the most       with equal frequency among studies with spatial or
widely reported form of fish data, followed closely by     temporal emphasis, and less often in studies with a
percentage composition (Fig. 5c). These 2 metrics       fish-habitat focus; the latter investigation type alone-
accounted for over half the reported entries (31 and      utilized multiple linear regression techniques.
24%, respectively) and were available from almost all       Simple data comparisons dominated the literature.
surveys of mangrove fishes that we examined. Size       Comparisons of fish data by family (38.1%) predomi-
information was less prevalent, and was present most      nated, probably because this information is presented
often as part of a description of collected fishes. Only    in species lists (Fig. 7a). Comparing fish groups
1 publication presented detailed size information for     according to life-history (maturity) stage or as either
several species over time (Robertson & Duke 1990b).      residents or transients (residency) was also common
Biomass information was more prevalent in the litera-     (23.7 and 19.5%, respectively). Comparisons accord-
ture than either density or standing crop (i.e. numbers    ing to trophic groups and diel period were among the
and biomass per unit area, respectively), both of which    least reported in the database. The characterization
require information about the area sampled (Fig. 5c).     and comparison of fishes according to their trophic
Remarkably, frequency of occurrence information (i.e.     level can be a valuable tool for revealing their role in
the proportion of sites or repeated samples that con-     system energy flow. The concept of using such func-
tained at least 1 individual), available from any survey,   tional groups as a basis for site and ecosystem com-
went unreported in > 90% of studies. Density, standing     parison and evaluation has recently been reviewed
crop, and frequency of occurrence data have not been      for coral reefs (Bellwood et al. 2004) and holds
reported from the West African region (Fig. 5d). Per-     promise for application to mangrove systems as well.
haps most limiting to mangrove fish habitat assess-      Evidence is mounting that mangroves primarily serve
ment is that only 1 estimate of growth (Robertson &      as daytime refugia for a major component of fishes
12                                              Mar Ecol Prog Ser 318: 1–18, 2006




                                                                    b) Analysis type
                             a) Analysis focus
                                                         0.6
                     1.0
                                                                                  Habitat
                                                   Habitat
    Proportion of studies

                                                                                  Spatial
                                                         0.5
                     0.8
                                                                                  Temporal
                                                   Spatial   0.4
                     0.6
                                                 Temporal     0.3
                     0.4
                                                         0.2
                     0.2                                   0.1

                                                         0.0
                     0.0




                                                                   s


                                                                   y




                                                                              n


                                                                                    ns
                                                                        VA
                          AM   AU    EA    SA     WA




                                                                 on



                                                                 rit




                                                                             tio



                                                                                   o
                                                                      O
                                                                ila
                                                               ris




                                                                                  si
                                                                            na
                                 Region




                                                                     AN
                                                               m




                                                                                  es
                                                             pa




                                                                            i
                                                                           rd
                                                             Si




                                                                                 gr
                                                            om




                                                                          O


                                                                                Re
                                                            C
Fig. 6. Data analyses performed within studies of mangrove fishes organized by (a) geographic region and (b) type (i.e. statistical
test). Data are organized according to the purpose of analyses: identifying spatial patterns (spatial), identifying temporal patterns
(temporal), or exploring fish–habitat interactions (habitat). Non-statistical comparisons of data types (e.g. density) are labeled
comparisons. Similarity refers to indices of similarity, diversity, and evenness. Geographic regions abbreviated as in Fig. 4


occupying mangrove shorelines (Rooker & Dennis                                  data from 19 studies that quantified fishes within
1991, Nagelkerken et al. 2000a, Valdés-Muñoz &                                  mangroves and at least one other habitat.
Mochek 2001). This suggests for some species that
fish production attributed to mangroves may not nec-
essarily derive from this habitat alone (Adams et al.                                        Current limitations
2006). Linkages between mangrove shorelines and
the proximity, size, and availability of nocturnal forag-                              Our review reveals that (1) certain regions, specifi-
ing areas, such as seagrass beds or mudflats, deserve                               cally South and Southeast Asia and West Africa, are
greater attention.                                                under-represented in the literature, (2) the majority of
                                                         surveys were spatially restrictive and/or of short dura-
                                                         tion, and (3) numerous purported surveys of mangrove
                                                         fishes failed to sample within mangrove habitats per
                             SYNOPSIS
                                                         se. In defense of these studies, most were designed
 This work represents the first attempt to assemble                               with modest goals in mind: (1) to identify which taxa
and examine a substantial number of published studies                               were present, and (2) to determine their abundances
of mangrove fishes. In contrast, previous reviews of                               among locations and/or sequential samples. While
the literature on mangrove fishes have been more                                 these studies have been useful in identifying the com-
limited in scope. Thayer & Sheridan (1999) examined                                ponents and dynamics of various assemblages of man-
the methods and results of less than 12 studies from                               grove fishes, this type of data provides little informa-
Florida (USA), while Sheridan & Hays (2003) compiled                               tion with which to compare and evaluate the

                                a) Fish comparisons: type                     b) Fish comparisons: region
                       0.5                                    1.0
           Proportion of studies




                                                                                    Diurnal
                       0.4                                    0.8
                                                                                    Trophic
                       0.3                                    0.6
                                                                                  Residency
                       0.2                                    0.4
                                                                                  Maturity
                       0.1                                    0.2
                                                                                    Family
                       0.0                                    0.0
                                                               AM   AU  EA    SA   WA
                             ily



                                   y


                                           y


                                                 c



                                                       l
                                                      na
                                    it


                                          nc


                                                hi
                           m


                                  ur




                                              op


                                                    ur




                                                                     Region
                                       de
                          Fa



                                 at




                                                   Di
                                             Tr
                                       si
                                M


                                      Re




Fig. 7. How fish metrics were grouped for data comparisons (a) among studies, and (b) by geographic region. Geographic regions
                          abbreviated as in Fig. 4
                                                              13
                   Faunce & Serafy: Mangrove-fish literature review




importance of mangrove habitats for ecosystem diver-                Future directions
sity and productivity.
  Where fish–habitat correlations have been exam-        The limitations above are important to consider
ined, most studies performed analyses at the assem-      when planning future studies. Given the history of the
blage level using environmental data obtained at the      literature, it appears likely that future studies will
time of sampling. Consequently, there is meagre infor-     continue to examine its spatio-temporal patterns of
mation on how individual species respond to environ-      mangrove use by fishes. In general, studies that exam-
mental variability. This is unfortunate, given that recent   ine fish and habitat features at multiple spatial and
works suggest that the nature of the relationship be-     temporal scales will be more valuable than those that
tween habitat features and fishes is species- and size-    examine at only one scale. Irrespective of scale, studies
specific, and that only with this level of understanding    that examine both the mean and variance of abiotic
can insight into ecological processes be gained (Bene-     and biotic metrics will provide more insight than those
detti-Cecchi 2003, Cocheret de la Morinière et al.       that only consider ‘static’ measures at the time of
2004). Furthermore, the type of fish metrics reported     sampling. Power analysis and/or sampling efficiency
did not often include those most desired by decision      evaluation are exceedingly rare in the literature, but
makers. For example, although simple presence/         are needed for mangrove fishes research to gain the
absence and percentage composition data were com-       attention it deserves (Ley et al. 1999). It is possible that
monly reported, size and frequency of occurrence were     statistical treatments such as these have been lacking
not, despite the fact that these metrics should be avail-   in the literature partly because, at the species-specific
able from any survey that repeatedly samples fishes.      level, ‘zero-laden’ fish abundance datasets are typical
The more detailed, difficult-to-collect data needed for    and less than desirable for traditional statistical treat-
mangrove valuation were effectively absent from the      ments. However, the problem of rarity is widespread in
database. With possibly 1 exception (i.e. Robertson &     ecological studies (Gaston 1994), including those on
Duke 1990b), no study of mangrove fishes recorded ad-     coral reef fishes (Jones et al. 2002). Researchers exam-
equate numbers over time, numbers at age, size-fre-      ining species-specific fish abundance data will benefit
quencies, or tag-recapture data needed for the tradi-     from the work of Aitchison (1955), Pennington (1983),
tional assessment of growth, mortality, or secondary      Lo et al. (1992) and Johnson et al. (1999).
production. As a result, comparisons of EFH or nursery      Several scientists are moving the study of mangrove
data from studies of mangrove fishes will likely be lim-    fishes beyond pattern recognition towards more eco-
ited to density or biomass values only. If the USDOC      logically meaningful landscape-scale approaches,
(1996) or Beck et al. (2001) definitions of these terms are  including habitat connectivity, suitability, and the
to be used to assess the habitat value of mangroves, fu-    contribution of mangrove habitats in support of adult fish
ture efforts must strive to track cohorts of fish over     populations (e.g. Pittman et al. 2004, Sheaves 2005,
space and time.                        Mumby 2006). However, the need for species- and life-
  Among the most significant conclusions to draw from     stage-specific information on growth, mortality, and sec-
this review is that surveys of mangrove fishes are not     ondary production rates remains. Although sufficient
readily comparable. Hence, the findings of any new       age–length, biomass and size-distribution data exist for
study may be either bolstered or refuted using selected    several species to generate habitat-specific production
references from the relevant literature. For example,     estimates, this step has yet to be taken for mangrove
findings are mixed in studies relating habitat features to   fishes. Attaining accurate home ranges and movement
assemblages of mangrove fishes with respect to water      rates for mangrove fishes represents an additional and
temperature (Wright 1986, Lin & Shao 1999), salinity      significant challenge towards linking juvenile and adult
(Quinn 1980, Ikejima et al. 2003), and turbidity (Little et  stocks. Studies that examine habitat quality and avail-
al. 1988b, Kimani et al. 1996). Different conclusions re-   ability are also needed to determine what makes some
garding the fish assemblage may be reached even when      mangroves more important fish habitats than others.
2 studies have been conducted within the same body of
water. For example, Williamson et al. (1994), who sam-
                                Acknowledgements. This work was derived from a portion of a
pled with 8 mm mesh beach seine in Raby Bay, Australia,
                                doctoral dissertation by C. H. F. We thank the present and past
reported, ‘the majority of fish captures were either small   library staff of the University of Miami’s Rosenstiel School of
species or juveniles’, while Moreton (1990) — who sam-     Marine and Atmospheric Science (RSMAS), especially Helen
                                Albertson and Gail Clement. We also appreciate the efforts of
pled with 18 mm mesh seines and 100 to 150 mm mesh
                                numerous students and staff of the international community at
gill nets — stated, ‘most species .… were present as both
                                RSMAS for translating numerous publications. The comments
juveniles and adults’ and ‘standing-crop estimates for     and additional literature sources provided by 4 anonymous
the fishes occurring within the mangroves were amongst     reviewers greatly improved this manuscript. This paper is
the highest recorded values for estuarine areas’.       Sustainable Fisheries Division Contribution SFD-2006-024.
14                         Mar Ecol Prog Ser 318: 1–18, 2006




           LITERATURE CITED                 Blaber SJM, Blaber TG (1980) Factors affecting the distribution
                                     of juvenile estuarine and inshore fish. J Fish Biol 17:143–162
Acosta A (1997) Use of multi-mesh gillnets and trammel nets to     Blaber SJM, Milton DA (1990) Species composition, commu-
  estimate fish species composition in coral reef and man-        nity structure and zoogeography of fishes of mangrove
  groves in the southwest coast of Puerto Rico. Caribb J Sci       estuaries in the Solomon Islands. Mar Biol 105:259–267
  33:45–57                              Blaber SJM, Young JW, Dunning MC (1985) Community struc-
Adams A, Dahlgren C, Kellison GT, Kendall MS, Layman CA,         ture and zoogeographic affinities of the coastal fishes of the
  Ley JA, Nagelkerken I, Serafy JE (2006) The juvenile con-       Dampier Region of north-western Australia. Aust J Mar
  tribution function of back reef systems. Mar Ecol Prog Ser       Freshw Res 36:247–266
  318:287–301                             Blaber SJM, Brewer DT, Salini JP (1989) Species composition
Aitchison J (1955) On the distribution of a positive random vari-     and biomasses of fishes in different habitats of a tropical
  able having a discrete probability mass at the origin. J Am      northern Australian estuary: their occurrence in the adjoin-
  Stat Assoc 50:901–908                         ing sea and estuarine dependence. Estuar Coast Shelf Sci
Alongi DM (2002) Present state and future of the world’s         29:509–531
  mangrove forests. Environ Conserv 29:331–349            Blaber SJM, Brewer DT, Harris AN (1994) Distribution, bio-
Alvarez León R, Blanco Racedo J (1985) Composition of fish        mass and community structure of demersal fishes of the
  communities in the lagoon and estuarine complex of Carta-       Gulf of Carpentaria, Australia. Aust J Mar Freshw Res 45:
  gena Bay, Cienaga de Tesca and Cienaga Grande of Santa         375–396
  Marta, Colombian Caribbean. In: Yáñez-Arancibia A (ed)       Boeseman M (1963) An annotated list of fishes from the Niger
  Fish community ecology in estuaries and coastal lagoons:        delta. Zool Verh 61:1–54
  towards an ecosystem integration. UNAM Press, Mexico        Boltachev AR (1991) Species composition in the estuarine
  City, p 535–656                            ichthyocene of the mangrove zone of Guinea. J Ichthyol
Amadi AA, Kilham P, Mavuti KM (1990) A comparative ecol-         31:67–75
  ogy of estuaries in Nigeria. Hydrobiologia 208:27–38        Boujard T, Rojas-Beltran R (1988) Longitudinal zonation of the
Araujo FG, De Azevedo MCC, Silva MA, Pessanha ALM,            fish population of the Sinnamary River (French Guiana).
  Gomes ID, Da Cruz-Filho AG (2002) Environmental influ-         Rev Hydrobiol Trop 21:47–61
  ences on the demersal fish assemblages in the Sepetiba       Boulon RH Jr (1992) Use of mangrove prop root habitats by fish
  Bay, Brazil. Estuaries 25:441–450                   in the northern US Virgin Islands. Proc Gulf Caribb Fish
Atiqullah M, Shaukat SS, Qureshi N (1997) Diversity of fish        Inst 41:189–204
  communities at Sandspit Karachi coast, Pakistan. Oebalia      Branch GM, Grindley JR (1979) Ecology of southern African
  23:45–59                                estuaries. Part XI. Mngazana: a mangrove estuary in
Austin HM (1971) A survey of the ichthyofauna of the man-         Transkei. S Afr J Zool 14:149–170
  groves of western Puerto Rico during December, 1967–        Cervigón F (1985) The ichthyofauna of the Orinoco estuarine
  August, 1968. Caribb J Sci 11:27–39                  water delta in the West Atlantic coast, Caribbean. In:
Baran E, Hambrey J (1998) Mangrove conservation and coastal        Yáñez-Arancibia A (ed) Fish community ecology in estuar-
  management in southeast Asia: What impact on fishery          ies and coastal lagoons: towards an ecosystem integration.
  resources? Mar Pollut Bull 37:431–440                 UNAM Press, Mexico City, p 57–78
Barletta-Bergan A, Barletta M, Saint-Paul U (2002) Community      Chaves P, Bouchereau JL (1999) Biodiversity and dynamics
  structure and temporal variability of ichthyoplankton in        of ichthyic communities in the mangrove of Guaratuba,
  North Brazilian mangrove creeks. J Fish Biol 61:33–51         Brazil. Oceanol Acta 22:353–364
Batista VS, Rego FN (1996) Análise de associações de peixes,      Chaves P, Correa MFM (1998) Composicao ictiofaunistical da
  em igarapés do estuário do Rio Tibiri, Maranhão. Rev Bras       area de manguezal da Baia de Guaratuba, Parana, Basil.
  Biol 56:163–176                            Rev Bras Biol 15:195–202
Beck MW, Heck KL, Able KW, Childers DL and 9 others (2001)       Chaves TC, Vendel AL (2001) Nota complementar sobre a
  The identification, conservation, and management of estu-       composicao ictiofaunistica da Baia de Guaratuba, Parana,
  arine and marine nurseries for fish and invertebrates. Bio-      Brasil. Rev Bras Biol 18:349–352
  Science 51:633–641                         Cheal AJ, Thompson AA (1997) Comparing visual counts of
Bell JD, Pollard DA, Burchmore JJ, Pease BC, Middleton MJ         coral reef fish: implications of transect width and species
  (1984) Structure of a fish community in a temperate tidal       selection. Mar Ecol Prog Ser 158:241–248
  mangrove creek in Botany Bay, New South Wales. Aust J        Chong VC, Sasekumar A, Leh MUC, D’Cruz R (1990) The fish
  Mar Freshw Res 35:33–46                        and prawn communities of a Malaysian coastal mangrove
Bell JD, Craik GJS, Pollard DA, Russell BC (1985) Estimating       system, with comparisons to adjacent mud flats and inshore
  length frequency-distributions of large reef fish under-        waters. Estuar Coast Shelf Sci 31:703–722
  water. Coral Reefs 4:41–44                     Claro R, García-Arteaga JP (1993) Fish community structure on
Bellwood DR, Hughes TP, Folke C, Nystrom M (2004) Con-          mangroves from the Insular Group Sabana-Camaguey,
  fronting the coral reef crisis. Nature 429:827–833           Cuba. Avicennia 0:60–83
Benedetti-Cecchi L (2003) The importance of the variance        Claro R, Lindeman KC, Parenti LR (2001) Ecology of the marine
  around the mean effect size of ecological processes.          fishes of Cuba. Smithsonian Institution Press, Washington,
  Ecology 84:2335–2346                          DC
Blaber SJM (1980) Fish of the Trinity Inlet system of north      Cocheret de la Morinière E, Pollux BJA, Nagelkerken I, van
  Queensland with notes on the ecology of fish faunas of         der Velde G (2002) Post-settlement life cycle migration pat-
  tropical Indo-Pacific estuaries. Aust J Mar Freshw Res 31:       terns and habitat preference of coral reef fish that use sea-
  137–146                                grass and mangrove habitats as nurseries. Estuar Coast
Blaber SJM (2000) Tropical estuarine fishes: ecology, exploita-      Shelf Sci 55:309–321
  tion, and conservation. Blackwell Science, London          Cocheret de la Morinière E, Nagelkerken I, van der Meij H,
Blaber SJM (2002) ‘Fish in hot water’: the challenges facing fish     van der Velde G (2004) What attracts juvenile coral reef fish
  and fisheries research in tropical estuaries. J Fish Biol 61:1–20   to mangroves: habitat complexity or shade? Mar Biol 144:
                                                                 15
                     Faunce & Serafy: Mangrove-fish literature review




  139–145                             Johnson DR, Funicelli NA, Bohnsack JA (1999) Effectiveness of
Collette BB (1983) Mangrove fishes of New Guinea. In: Teas HJ      an existing estuarine no-take fish sanctuary within the
  Biology and ecology of mangroves. Dr. W. Junk Publishers,      Kennedy Space Center, Florida. North Am J Fish Manag
  The Hague, p 91–102                         19:436–453
Connell JH (1978) Diversity in tropical rain forests and coral   Jones GP, Caley MJ, Munday PL (2002) Rarity in coral reef fish
  reefs. Science 199:1302–1310                    communities. In: Sale PF (ed) Coral reef fishes: dynamics
Dankwa HR, Gordon C (2002) The fish and fisheries of the        and diversity in a complex ecosystem. Academic Press, San
  Lower Volta mangrove swamps in Ghana. Afr J Sci Technol       Diego, CA, p 81–102
  (Sci Eng Ser) 3:25–32                      Kendall MS, Christensen JD, Hillis-Starr Z (2003) Multi-scale
Davis TLO (1988) Temporal changes in the fish fauna entering      data used to analyze the spatial distribution of French
                                    grunts, Haemulon flavolineatum, relative to hard and soft
  a tidal swamp system in tropical Australia. Environ Biol
  Fish 21:161–172                           bottom in a benthic landscape. Environ Biol Fish 66:19–26
Day JH (1974) The ecology of Morrumbene estuary, Mozam-       Kimani EN, Mwatha GK, Wakwabi EO, Ntiba JM, Okoth BK
  bique. Trans R Soc S Afr 41:43–97                  (1996) Fishes of a shallow tropical mangrove estuary, Gazi,
Dennis GD (1992) Island mangrove habitats as spawning and        Kenya. Mar Freshw Res 47:857–868
  nursery areas for commercially important fishes in the     Krishnamurthy K, Jeyasslan MJP (1981) The early life history
  Caribbean. Proc Gulf Caribb Fish Inst 41:205–225          of fishes from Pichavaram mangrove ecosystem of India. In:
Faunce CH, Serafy JE, Lorenz JJ (2004) Density-habitat rela-      Lasker R, Sherman K (eds) The early life history of fish:
  tionships of mangrove creek fishes within the southeastern     recent studies. Second ICES Symposium. Cons Int Explor
  saline Everglades (USA), with reference to managed fresh-      Mer, Palegade 2–4, Copenhagen, p 416–423
  water releases. Wetlands Ecol Manag 12:377–394         Kuo S, Lin H, Shao K (1999) Fish assemblages in the mangrove
Flores-Verdugo F, González-Farias F, Ramírez-Flores O,         creeks of northern and southern Taiwan. Estuaries 22:
  Amezcua-Linares A, Yáñez-Arancibia A, Alvarez-Rubio M,       1004–1015
  Day JW Jr (1990) Mangrove ecology, aquatic primary pro-     Laegdsgaard P, Johnson CR (1995) Mangrove habitats as nurs-
  ductivity, and fish community dynamics in the Teacapan-       eries: unique assemblages of juvenile fish in subtropical
  Agua Brava lagoon-estuarine system (Mexican Pacific).        mangroves in eastern Australia. Mar Ecol Prog Ser 126:67–81
  Estuaries 13:219–230                      Laegdsgaard P, Johnson CR (2001) Why do juvenile fish utilize
Gaston KJ (1994) Rarity. Chapman & Hall, London             mangrove habitats? J Exp Mar Biol Ecol 257:229–253
Gillanders BM, Able KW, Brown JA, Eggleston DB, Sheridan      Lal PN (1984) Coastal fisheries and the management of man-
  PF (2003) Evidence of connectivity between juvenile and       grove resources in Fiji. SPC Fish Newsl:15–23
  adult habitats for mobile marine fauna: an important com-    Laroche J, Baran E, Rasoanandrasana NB (1997) Temporal pat-
  ponent of nurseries. Mar Ecol Prog Ser 247:281–295         terns in a fish assemblage of a semiarid mangrove zone in
Gonzalez-Acosta AF, De la Cruz Agüero J, Ruiz-Campos G         Madagascar. J Fish Biol 51:3–20
  (1999) Ichthyofauna associated to El Conchalito mangrove    Lasserre G, Toffart JL (1977) Echantillonnage et structure des
  swamp, Ensenada de La Paz, Baja California Sur, Mexico.       populations ichthyologiques des mangroves de Guade-
  Investigaciones Marinas CICIMAR 14:121–131             loupe en Septembre 1975. Cybium 3:115–127
Greene LE, Alevizon WS (1989) Comparative accuracies of       Leigh EG (1990) Community diversity and environmental
  visual assessment methods for coral reef fishes. Bull Mar Sci    stability— a reexamination. Trends Ecol Evol 5:340–344
  44:899–912                           Ley JA, McIvor CC (2001) Linkages between estuarine and
Hajisamae S, Chou LM (2003) Do shallow water habitats of an       reef fish assemblages: enhancement by the presence of
  impacted coastal strait serve as nursery grounds for fish?     well-developed mangrove shorelines. In: Porter JW, Porter
  Estuar Coast Shelf Sci 56:281–290                  KG (eds) The Everglades, Florida Bay, and coral reefs of the
Halliday IA, Young WR (1996) Density, biomass and species        Florida Keys: an ecosystem sourcebook. CRC Press, Boca
  composition of fish in a subtropical Rhizophora stylosa       Raton, FL, p 539–562
  mangrove forest. Mar Freshw Res 47:609–615           Ley JA, McIvor CC, Montague CL (1999) Fishes in mangrove
He B, Fan H, Mo Z (2001) Study on species diversity of fishes in    prop-root habitats of northeastern Florida Bay: distinct
  mangrove area of Yingluo Bay, Guangxi province. J Trop       assemblages across an estuarine gradient. Estuar Coast
  Oceanogr 20:74–79                          Shelf Sci 48:701–723
Heck JL, Hays G, Orth RJ (2003) Critical evaluation of the     Lin HJ, Shao KT (1999) Seasonal and diel changes in a subtrop-
  nursery role hypothesis for seagrass meadows. Mar Ecol       ical mangrove fish assemblage. Bull Mar Sci:775–794
  Prog Ser 253:123–136                      Lindeman KC, Snyder DB (1999) Nearshore hardbottom fishes
Holm RF (1977) The standing crop of fishes in a tropical marine     of southeast Florida and effects of habitat burial caused by
  lagoon. Fla Sci 40:258–261                     dredging. Fish Bull 97:508–525
Ikejima K, Tongnunui P, Medej T, Taniuchi T (2003) Juvenile     Little MC, Reay PJ, Grove SJ (1988a) Distribution gradients
  and small fishes in a mangrove estuary in Trang Province,      of ichthyoplankton in an East African mangrove creek.
  Thailand: seasonal and habitat differences. Estuar Coast      Estuar Coast Shelf Sci 26:669–677
  Shelf Sci 56:447–457                      Little MC, Reay PJ, Grove SJ (1988b) The fish community of an
Inger RE (1955) Ecological notes on the fish fauna of a coastal     East African mangrove creek. J Fish Biol 32:729–747
  drainage of North Borneo. Fieldiana Zool 37:47–90        Lo NCH, Jacobson LD, Squire JL (1992) Indexes of relative
Janekarn V (1993) Species composition and annual population       abundance from fish spotter data dased on Delta-Lognormal
  growth of fishes in front of a mangrove in Phang-Nga Bay,      models. Can J Fish Aquat Sci 49:2515–2526
  the Andaman Sea, Thailand. Phuket Mar Biol Cent (Spec.     Lorenz JJ (1999) The response of fishes to physicochemi-
  Publ.) 12:131–140                          cal changes in the mangroves of northeast Florida Bay.
Janekarn V, Boonruang P (1986) Composition and occurrence        Estuaries 22:500–517
  of fish larvae in mangrove areas along the east coast of    Louis M, Bouchon C, Bouchon-Navaro Y (1992) L’ichtyofaune
  Phuket Island, western peninsular, Thailand. Phuket Mar       de mangrove dans la Baie de Fort-de-France (Martinique).
  Biol Cent Res Bull 44:1–22                     Cybium 16:291–305
16                       Mar Ecol Prog Ser 318: 1–18, 2006




Louis M, Bouchon C, Bouchon-Navaro Y (1995) Spatial and        tions in catch from two mangrove habitats in the Lagos
  temporal variations of mangrove fish assemblages in Mar-      Lagoon. Environ Ecol 13:121–128
  tinique (French West Indies). Hydrobiologia 295:275–284     Odum WE, McIvor CC, Smith TJ, III (1982) Ecology of the
Louis M, Lam Hoai T, Lasserre G (1985) Résultats préliminaires     mangroves of south Florida: a community profile. Office of
  sur le recrutement en poissons dans deux lagunes des man-      Biological Services, Fish and Wildlife Service, US Dept. of
  groves de Guadeloupe: Belle-Plaine et Manche-à-Eau. Rev       Interior, Washington, DC
  Hydrobiol Trop 18:249–265                    Paranagua MN, Eskinazi-Leça E (1985) Ecology of a northern
Lugendo BR, Pronker A, Cornelissen I, de Groene A, Nagel-       tropical estuary in Brazil and technological perspectives
  kerken I, Dorenbosch M, van der Velde G, Mgaya YD          in fish culture. In: Yáñez-Arancibia A (ed) Fish community
  (2005) Habitat utilisation by juveniles of commercially       ecology in estuaries and coastal lagoons: towards an
  important fish species in a marine embayment in Zanzibar,      ecosystem integration. UNAM Press, Mexico City,
  Tanzania. Aquat Living Resour 18:149–158              p 595–614
Lugo AE, Snedaker SC (1974) The ecology of mangroves.       Pennington M (1983) Efficient estimators of abundance, for fish
  Annu Rev Ecol Syst 5:39–64                     and plankton surveys. Biometrics 39:281–286
Manly BFJ, McDonald LL, Thomas DL (1993) Resource selec-      Phillips PC (1981a) Annotated checklist of fishes at Jiquilisco
  tion by animals: statistical design and analysis for field     Bay, El Salvador. Rev Biol Trop 29:45–58
  studies. Chapman & Hall, London                 Phillips PC (1981b) Diversity and fish community structure in
Martínez AM, Contreras S, Maravilla O (1982) Abundancia y       a central American mangrove embayment. Rev Biol Trop
  diversidad de la ictiofauna, en tres areas de manglar de la     29:227–236
  Bahía de la Paz, México. Trans Cibcasio 6:138–151        Pinto L (1987) Environmental factors influencing the occur-
McIvor CC, Odum WE (1986) The flume net: a quantitative        rence of juvenile fish in the mangroves of Pagbilao, Philip-
  method for sampling fishes and macrocrustaceans on tidal      pines. Hydrobiologia 150:283–301
  marsh surfaces. Estuaries 9:219–224               Pinto L, Punchihewa NN (1996) Utilization of mangroves and
Morton RM (1990) Community structure, density and standing       seagrasses by fishes in the Negombo Estuary, Sri Lanka.
  crop of fishes in a subtropical Australian mangrove area.      Mar Biol 126:333–345
  Mar Biol 105:385–394                      Pittman SJ, McAlpine CA, Pittman KM (2004) Linking fish
Mullin SJ (1995) Estuarine fish populations among red man-       and prawns to their environment: a hierarchical landscape
  grove prop roots of small overwash islands. Wetlands 15:      approach. Mar Ecol Prog Ser 283:233–254
  324–329                             Pollard DA, Hannan JC (1994) The ecological effects of
Mumby PJ (2006) Connectivity of reef fish between mangroves      structural flood mitigation works on fish habitats and fish
  and coral reefs: algorithms for the design of marine        communities in the lower Clarence River system of south-
  reserves. Biol Conserv 128:215–222                 eastern Australia. Estuaries 17:427–461
Nagelkerken I, van der Velde G (2002) Do non-estuarine       Primavera JH (1997) Fish predation on mangrove-associated
  mangroves harbour higher densities of juvenile fish than      penaeids: the role of structures and substrate. J Exp Mar
  adjacent shallow-water and coral reef habitats in Curaçao      Biol Ecol 215:205–216
  (Netherlands Antilles)? Mar Ecol Prog Ser 245:191–204      Quinn NJ (1980) Analysis of temporal changes in fish assem-
Nagelkerken I, Dorenbosch M, Verberk WCEP, Cocheret de la       blages in Serpentine Creek, Queensland. Environ Biol Fish
  Morinière E, van der Velde G (2000a) Day–night shifts of      5:117–133
  fishes between shallow-water biotopes of a Caribbean bay,    Quinn NJ, Kojis BJ (1985) Does the presence of coral reefs in
  with emphasis on the nocturnal feeding of Haemulidae and      proximity to a tropical estuary affect the estuarine fish
  Lutjanidae. Mar Ecol Prog Ser 194:55–64               assemblage? In: Harmelin-Vivien M, Salvat B, La Croix C,
Nagelkerken I, Dorenbosch M, Verberk WCEP, Cocheret de la       Gabrie C, Toffart JL (eds) Proc Fifth Int Coral Reef Congr,
  Morinière E, van der Velde G (2000b) Importance of shal-      Tahiti, 27 May–1 Jun 1985, Miscellaneous papers (A),
  low-water biotopes of a Caribbean bay for juvenile coral      Vol 5. Antenne Museum-EPHE, Moorea, p 445–450
  reef fishes: patterns in biotope association, community     Robertson AI, Duke NC (1987) Mangroves as nursery sites:
  structure and spatial distribution. Mar Ecol Prog Ser        comparisons of the abundance and species composition of
                                    fish and crustaceans in mangroves and other nearshore
  202:175–192
                                    habitats in tropical Australia. Mar Biol 96:193–205
Nagelkerken I, van der Velde G, Gorissen MW, Meijer GJ,
                                  Robertson AI, Duke NC (1990a) Mangrove fish-communities in
  van’t Hof T, den Hartog C (2000c) Importance of man-
                                    tropical Queensland, Australia: spatial and temporal pat-
  groves, seagrass beds and the shallow coral reef as a nurs-
                                    terns in densities, biomass and community structure. Mar
  ery for important coral reef fishes, using a visual census
                                    Biol 104:369–379
  technique. Estuar Coast Shelf Sci 51:31–44
                                  Robertson AI, Duke NC (1990b) Recruitment, growth and resi-
Nagelkerken I, Kleijnen S, Klop T, van den Brand RACJ,
                                    dence time of fishes in a tropical Australian mangrove
  Cocheret de la Morinière EC, van der Velde G (2001)
                                    system. Estuar Coast Shelf Sci 31:723–743
  Dependence of Caribbean reef fishes on mangroves and
                                  Rojas JRM, Castro M, Pizarro JF (1994a) Lista agregada de
  seagrass beds as nursery habitats: a comparison of fish fau-
                                    peces en tres zonas de manglar del Golfo de Nicoya, Costa
  nas between bays with and without mangroves/seagrass
                                    Rica. Uniciencia 11:89–96
  beds. Mar Ecol Prog Ser 214:225–235
                                  Rojas JRM, Pizarro JF, Castro MV (1994b) Diversidad y abun-
Nagelkerken I, Roberts CM, van der Velde G, Dorenbosch M,
                                    dancia íctica en tres áreas de manglar en el Golfo de
  van Riel MC, Cocheret de la Morinière E, Nienhuis PH
                                    Nicoya, Costa Rica. Rev Biol Trop 42:663–672
  (2002) How important are mangroves and seagrass beds for
                                  Rönnbäck P, Troell M, Kautsky N, Primavera JH (1999) Distrib-
  coral-reef fish? The nursery hypothesis tested on an island
                                    ution pattern of shrimps and fish among Avicennia and
  scale. Mar Ecol Prog Ser 244:299–305
                                    Rhizophora microhabitats in the Pagbilao Mangroves,
Newman SP, Gruber SH (2002) Comparison of mangrove and
                                    Philippines. Estuar Coast Shelf Sci 48:223–234
  seagrass fish and macroinvertebrate communities in
                                  Rooker JR, Dennis GD (1991) Diel, lunar and seasonal changes
  Bimini. Bahamas J Sci 9:19–27
                                    in a mangrove fish assemblage off southwestern Puerto
Nwadukwe FO (1995) Species abundance and seasonal varia-
                                                                17
                    Faunce & Serafy: Mangrove-fish literature review




  Rico. Bull Mar Sci 49:684–698                   inventories of coral reefs, soft bottoms and mangroves in
Rozas LP, Minello TJ (1997) Estimating densities of small fishes   Saint-Vincent Bay (New Caledonia). Proc Sixth Int Coral
  and decapod crustaceans in shallow estuarine habitats: a     Reef Symp 2, Townsville, p 613–618
  review of sampling design with focus on gear selection.    Thompson AA, Mapstone BD (1997) Observer effects and
  Estuaries 20:199–213                       training in underwater visual surveys of reef fishes. Mar
Russ GR, Stockwell B, Alcala AC (2005) Inferring versus        Ecol Prog Ser 154:53–63
  measuring rates of recovery in no-take marine reserves.    Tobias WJ (2001) Mangrove habitat as nursery grounds for re-
  Mar Ecol Prog Ser 292:1–12                    creationally important fish species — Great Pond, St. Croix,
Sasekumar A, Chong VC, Leh MU, D’Cruz R (1992) Man-          U.S. Virgin Islands. Proc Gulf Caribb Fish Inst 52:468–487
  groves as a habitat for fish prawns. Hydrobiologia 247:    Tongnunui P, Ikejima K, Yamane T, Horinouchi M, Medej T,
  195–207                              Sano M, Kurokura H, Taniuchi T (2002) Fish fauna of the
Savage RE (1931) The relation between the feeding of the her-     Sikao Creek mangrove estuary, Trang, Thailand. Fish Sci
  ring off the east coast of England and the plankton of the    68:10–17
  surrounding waters. Fish Invest Lond Ser II 12:1–88      Tzeng W, Wang Y (1992) Structure, composition and seasonal
Sedberry GR, Carter J (1993) The fish community of a shallow     dynamics of the larval and juvenile fish community in the
  tropical lagoon in Belize, Central America. Estuaries       mangrove estuary of Tanshui river, Taiwan. Mar Biol 113:
  16:198–215                            481–490
Serafy JE, Faunce CH, Lorenz JJ (2003) Mangrove shoreline     Uieda VS, Uieda W (2001) Species composition and spatial dis-
  fishes of Biscayne Bay, Florida. Bull Mar Sci 72:161–180     tribution of a stream fish assemblage in the east coast of
Sheaves MJ (1992) Patterns of distribution and abundance of      Brazil: comparison oftwo field study methodologies. Brazilian
  fishes in different habitats of a mangrove-lined tropical     J Biol 61:377–388
  estuary, as determined by fish trapping. Aust J Mar Freshw   USDOC (1996) Magnusen-Stevens Fishery Conservation and
  Res 43:1461–1479                         Management Act as amended through October 11, 1996,
Sheaves M (1995) Large lutjanid and serranid fishes in tropical    National Oceanic and Atmospheric Administration Techni-
  estuaries: Are they adults or juveniles? Mar Ecol Prog Ser    cal Memorandum NMFS-F/SPO-23
  129:31–40                           Valdés-Muñoz E (1981) Estructura y diversidad de la ictiofauna
Sheaves MJ (1998) Spatial patterns in estuarine fish faunas in    de los manglares de Punta del Este, Isla de la Juventud.
  tropical Queensland: a reflection of interaction between     Cienc Biol 6:111–124
  long-term physical and biological processes? Mar Freshw    Valdés-Muñoz E, Mochek AD (2001) Behavior of marine fishes
  Res 49:31–40                           of the Cuban shelf. In: Claro R, Lindeman KC, Parenti LR
Sheaves M (2005) Nature and consequences of biological        (eds) Ecology of the marine fishes of Cuba. Smithsonian
  connectivity in mangrove systems. Mar Ecol Prog Ser 302:     Institution Press, Washington, DC, p 73–114
  293–305                            van der Velde G, Gorissen MW, Denhartog C, Vanthoff T,
Sheridan PF (1992) Comparative habitat utilization by estuar-     Meijer GJ (1992) Importance of the Lac-Lagoon (Bonaire,
  ine macrofauna within the mangrove ecosystem of Rookery      Netherlands-Antilles) for a selected number of reef fish
  Bay, Florida. Bull Mar Sci 50:21–39                species. Hydrobiologia 247:139–140
Sheridan P, Hays C (2003) Are mangroves nursery habitat for    Vance DJ, Haywood MDE, Heales DS, Kenyon RA, Loneragan
  transient fishes and decapods? Wetlands 23:449–458        NR, Pendrey RC (1996) How far do prawns and fish move
Snedaker SC (1989) Overview of ecology of mangroves and        into mangroves? Distribution of juvenile banana prawns
                                   Penaeus merguiensis and fish in a tropical mangrove forest
  information needs for Florida Bay. Bull Mar Sci 44:341–347
Sogard SM, Powell GVN, Holmquist JG (1989) Spatial-          in northern Australia. Mar Ecol Prog Ser 131:115–124
  distribution and trends in abundance of fishes residing in   Vega-Cendejas ME, de Santillana MH (2004) Fish community
  seagrass meadows on Florida Bay mudbanks. Bull Mar Sci      structure and dynamics in a coastal hypersaline lagoon: Rio
  44:179–199                            Lagartos,Yucatan, Mexico. Estuar Coast Shelf Sci 60:285–299
Spalding M, Blasco F, Field C (1997) World Mangrove Atlas.     Vega-Cendejas ME, Ordóñez U, Hernández M (1994) Day-
  The International Society for Mangrove Ecosystems         Night variation of fish population in the mangrove of
  (ISME), Okinawa                          Celestun lagoon, Mexico. Int J Ecol Env Sci 20:99–108
St. John J, Russ GR, Gladstone W (1990) Accuracy and bias of    Vidy G (2000) Estuarine and mangrove systems and the nurs-
  visual estimates of numbers, size structure and biomass of a   ery concept: which is which? The case of the Sine Saloum
  coral reef fish. Mar Ecol Prog Ser 64:253–262           system (Senegal). Wetl Ecol Manag:37–51
Stoner AW (1986) Community structure of the demersal fish     Vose FE, Bell SS (1994) Resident fishes and macrobenthos in
  species of Laguna Joyuda, Puerto Rico. Estuaries 9:142–152    mangrove-rimmed habitats: evaluation of habitat restora-
Thayer GW, Sheridan P (1999) Fish and aquatic invertebrate      tion by hydrologic modification. Estuaries 17:585–596
  use of the mangrove prop-root habitat in Florida: a review.  Warburton K (1978) Community structure, abundance and
  In: Yáñez-Arancibia A, Lara-Domínguez AL (eds) Ecosis-      diversity of fish in a Mexican coastal lagoon system. Estuar
  temas de Manglar en America Tropical. Instituto de Ecolo-     Coast Mar Sci 7:497–519
  gia, A.C. Mexico, UICN/ORMA Costa Rica, NOAA/NMFS       Weinstein MP, Courtney CM, Kinch JC (1977) The Marco
  Silver Spring, MD, p 380                     Island estuary: a summary of physicochemical and biologi-
Thayer GW, Colby DR, Hettler WF Jr (1987) Utilization of the     cal parameters. Fla Sci 40:97–124
  red mangrove prop root habitat by fishes in South Florida.   Weng HT (1990) Fish in shallow areas in Moreton Bay,
  Mar Ecol Prog Ser 35:25–38                    Queensland and factors affecting their distribution. Estuar
Thia-Eng C (11973) An ecological study of the Ponggol estuary     Coast Shelf Sci 30:569–578
  in Singapore. Hydrobiol 43:3–4                 Williamson I, King C, Mather PB (1994) A comparison of fish
Thollot P (1992) Importance des mangroves pour la faune        communities in unmodified and modified inshore habitats
  ichtyologique des récifs coralliens de Nouvelle-Calédonie.    of Raby Bay, Queensland. Estuar Coast Shelf Sci 39:
  Cybium 16:331–344                         401–411
Thollot P, Kulbicki M (1988) Overlap between the fish fauna    Wright JM (1986) The ecology of fish occurring in shallow
18                      Mar Ecol Prog Ser 318: 1–18, 2006




  water creeks of a Nigerian mangrove swamp. J Fish Biol     mass and diversity of estuarine fishes coupled with tropical
  29:431–441                           habitat heterogeneity (southern Gulf of Mexico). J Fish Biol
Yáñez-Arancibia A (1985) Fish community ecology in estuaries    33:191–200
  and coastal lagoons: towards an ecosystem integration.    Yáñez-Arancibia A, Lara-Domínguez AL, Day JW Jr (1993) In-
  UNAM Press, Mexico                       teractions between mangrove and seagrass habitats medi-
Yáñez-Arancibia A, Lara-Domínguez AL, Rojas-Galaviz JL,      ated by estuarine nekton assemblages: coupling of primary
  Sanchez-Gil P, Day JW Jr, Madden CJ (1988) Seasonal bio-    and secondary production. Hydrobiologia 264:1–12

Editorial responsibility: Howard I. Browman (Associate     Submitted: February 17, 2005; Accepted: May 24, 2006
Editor-in-Chief), Storebø, Norway                Proofs received from author(s): July 12, 2006
by Chris Kennedy last modified 26-01-2007 12:59
 

Built with Plone