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INTRODUCTION

Mangroves forests, distributed circumtropically in the inter-

tidal region between sea and land in the tropical and

subtropical latitudes, provide important ecosystem goods

and services. The forests help stabilize shorelines and reduce

the devastating impact of natural disasters, such as tsunamis

and hurricanes. They also serve as breeding and nursing

grounds for marine species and are sources of food, medicine,

fuel and building materials for local communities. However,

the forests have been declining at an alarming rate – perhaps

even more rapidly than inland tropical forests (Aizpuru et al.,

2000) – and much of what remains is in degraded condition

(Valiela et al., 2001; Wilkie et al., 2003). Conversion of
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ABSTRACT

Aim We aimed to estimate the present extent of tsunami-affected mangrove

forests and determine the rates and causes of deforestation from 1975 to 2005.

Location Our study region covers the tsunami-affected coastal areas of

Indonesia, Malaysia, Thailand, Burma (Myanmar), Bangladesh, India and Sri

Lanka in Asia.

Methods We interpreted time-series Landsat data using a hybrid supervised

and unsupervised classification approach. Landsat data were geometrically

corrected to an accuracy of plus-or-minus half a pixel, an accuracy necessary

for change analysis. Each image was normalized for solar irradiance by converting

digital number values to the top-of-the atmosphere reflectance. Ground truth

data and existing maps and data bases were used to select training samples and

also for iterative labelling. We used a post-classification change detection

approach. Results were validated with the help of local experts and/or high-

resolution commercial satellite data.

Results The region lost 12% of its mangrove forests from 1975 to 2005, to a

present extent of c. 1,670,000 ha. Rates and causes of deforestation varied both

spatially and temporally. Annual deforestation was highest in Burma (c. 1%) and

lowest in Sri Lanka (0.1%). In contrast, mangrove forests in India and Bangladesh

remained unchanged or gained a small percentage. Net deforestation peaked at

137,000 ha during 1990–2000, increasing from 97,000 ha during 1975–90, and

declining to 14,000 ha during 2000–05. The major causes of deforestation were

agricultural expansion (81%), aquaculture (12%) and urban development (2%).

Main conclusions We assessed and monitored mangrove forests in the

tsunami-affected region of Asia using the historical archive of Landsat data. We

also measured the rates of change and determined possible causes. The results of

our study can be used to better understand the role of mangrove forests in saving

lives and property from natural disasters such as the Indian Ocean tsunami, and

to identify possible areas for conservation, restoration and rehabilitation.

Keywords
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mangrove forests to aquaculture is on the rise in many

countries of the region without considering the fact that the

total economic value of intact mangrove forests is often higher

than that of shrimp farming (Balmford et al., 2002). The

remaining mangrove forests are under immense pressure from

clearcutting, encroachment, hydrological alterations, chemical

spills, storms and climate change (Blasco et al., 2001; McKee,

2005).

The Indian Ocean tsunami of December 2004 and other

natural disasters have highlighted the importance of mangrove

forests as a ‘bio-shield’ that protects vulnerable coastal

communities. Mangrove forests attenuated the Indian Ocean

tsunami waves and protected coastal communities in Indone-

sia, Thailand, India and Sri Lanka (Danielsen et al., 2005;

IUCN, 2005; Kathiresan & Rajendran, 2005). In some areas,

mangrove forests hit by the Indian Ocean tsunami suffered

severe damage from breaking and uprooting. Recent findings

suggest that the continued destruction and degradation of

many mangrove forests throughout the tropics over the past

few decades has decreased the protective capacity of mangrove

forest ecosystems and reduced their ability to rebound from

natural disasters (Dahdouh-Guebas et al., 2005; Nigel, 2005;

Weiner, 2005). However, accurate and reliable information on

the present extent of mangrove forests and the rate and causes

of deforestation in the tsunami-affected region of Asia has not

been available (Adeel & Pomeroy, 2002; Danielsen et al., 2005;

UNEP, 2004). Such information is needed to better understand

the protective role of mangrove forests and to learn more

about deforestation dynamics, carbon fluxes, forest fragmen-

tation and the provision of ecosystem goods and services.

Remote sensing is an indispensable tool for assessing and

monitoring mangrove forests, primarily because many man-

grove swamps are inaccessible or difficult to field survey.

Remote sensing provides synoptic coverage, and historical

satellite data dating back to the 1960s are available. Global

mapping initiatives have failed to map the extent and rate of

deforestation with sufficient detail because these studies have

been based on satellite data with coarse spatial resolution

(1 km or coarser). For example, only extensive mangrove areas

were mapped as part of the Global Land Cover 2000 survey

(Stibig et al., 2007). At local scales, several studies have used

moderate-resolution satellite data [e.g. Landsat, SPOT and the

India Remote Sensing Linear Imaging Self-scanning Sensor

(IRS LISS III)] to characterize and map mangrove forests

(Silapong & Blasco, 1992; Ramsey & Jansen, 1996; Blasco et al.,

2001; Selvam et al., 2003; Ramasubramanian et al., 2006;

Vaiphasa et al., 2006). Synergistic use of optical and radar data

has been particularly useful in cloud-covered tropical man-

grove areas (Aschbacher et al., 1994; Giri & Delsol, 1995).

However, large areas of the tsunami-affected countries of Asia

(Indonesia, Malaysia, Thailand, Burma, Bangladesh, India and

Sri Lanka) remain unmapped. As a result, the present extent of

mangrove forests, and the rate and causes of deforestation, are

unknown.

We determined the extent and distribution of mangrove

forests in the tsunami-affected countries and identified the

rates and causes of change using multi-temporal satellite data

and field observations. Our analysis sought to answer the

following research questions: how much mangrove forest

remains; where are the remaining mangrove forests located;

what is the rate of change; what are the main reasons for the

change?

Study area

Our study area covers the coastal areas of Indonesia, Malaysia,

Thailand, Burma (Myanmar), Bangladesh, India and Sri Lanka.

We chose this area for a number of reasons. First, this area was

the most devastated during the Indian Ocean tsunami of

December 2004; as a result, many national governments and

international organizations are now implementing ambitious

conservation and rehabilitation programmes. Second, the region

contains approximately 10% of the total mangrove forests of the

world, including the largest remaining contiguous mangrove

forest in the world, the Sundarbans. Third, strong demographic

pressure and diverse climatic conditions in the region have

created a mosaic of mangrove diversity that is changing

constantly. Fourth, the region is the epicentre of mangrove

biodiversity and consists of many existing and planned national

parks, biosphere reserves and world heritage sties.

The forest is under severe threat from both anthropogenic

and natural forces. Anthropogenic threats include encroach-

ment from expansion of agriculture (e.g. rice farming, coconut

and oil palm), aquaculture, urban development (e.g. resorts),

mining, salt pan development and overexploitation of

resources. Natural threats include erosion, sedimentation and

sea level rise. Because of these threats, mangrove forest is the

most threatened habitat in the region. Only sporadic patches of

mangrove forests are left in India and Sri Lanka, and they have

been depleted in Burma, Thailand, Malaysia and Indonesia.

In addition to deforestation, mangrove forests have been

declining in biological diversity and economic value. Many

flora and fauna are vulnerable, near-threatened, threatened,

endangered or critically endangered. Economic activities such

as extraction of timber and fuel wood, fishing and the

collection of honey and other forest products have also

diminished.

DATA AND METHODOLOGY

Data acquisition

We used Landsat GeoCover and recently acquired Enhanced

Thematic Mapper Plus (ETM+) data, made available through

the US Geological Survey (USGS) Center for Earth Resources

Observation and Science (EROS) (http://eros.usgs.gov). Geo-

Cover is a collection of Landsat data with global coverage and

generally cloud-free images. Data were collected for three

epochs: (1) the ‘1975’ imagery from 1973 to 1983, (2) the

‘1990’ imagery from 1989 to 1993, and (3) the ‘2000’ imagery

from 1997 to 2000. Detailed descriptions of GeoCover data

can be found at https://zulu.ssc.nasa.gov/mrsid/. Additional
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Multispectral Scanner (MSS) and Thematic Mapper (TM) data

were acquired to supplement cloud-covered areas. The ‘2005’

Enhanced Thematic Mapper Plus (ETM+) data collected from

2005 to 2006 were acquired from EROS. Approximately 216

Landsat TM or ETM+ scenes each for 1990, 2000 or 2005, and

57 MSS scenes for 1975 were acquired for the study. Same-year

and same-season data are best for this kind of study, but cloud-

free images of the region were not available for all time

periods, prompting us to augment them with multi-season and

multi-year data. Twenty-four QuickBird scenes and eight

IKONOS scenes, all collected in 2005 and 2006, were also

acquired.

Field survey

We conducted a 4-week field survey in Malaysia, Thailand, Sri

Lanka and India during June and July 2006. A total of 182

calibration/validation points were collected. We used a Global

Positioning System (GPS) to record the exact location of the

survey site, and we took a photograph at every location. All the

photos were georeferenced using GPS-Photo Link (http://

www.geospatialexperts.com/) and were used in tandem with

satellite imagery within Google Earth to verify mangrove

locations and conditions. Data on presence or absence of

mangrove forests, and their condition, density, crown cover

and management regimes were collected during the field

survey. Density and crown cover were estimated visually. The

extent of damage caused by the Indian Ocean tsunami and any

recovery measures taken were also noted. The field data served

as training data, a portion of which served as independent

reference data for the verification of classification results.

We visited the national mapping agencies of the countries in

the region to collect ancillary data such as forest classification

maps, topographic maps and tsunami reports (Table 1). The

team also visited local forestry departments to discuss various

aspects of mangrove management. With their help, mangrove

and non-mangrove areas were delineated on hard-copy maps.

Local officials provided field data and information on mangrove

damage due to tsunami and afforestation/reforestation status.

They also guided the research team during the field visit.

Pre-processing

The use of multi-temporal satellite data (MSS, TM and ETM+)

at a subcontinent scale poses a number of challenges:

geometric correction error, noise arising from atmospheric

effects, errors arising from changing illumination geometry

and instrument errors (Homer et al., 2004). Such errors are

likely to introduce biases and/or noise into mangrove forest

classification and change analyses. Pre-processing is necessary

to remove or minimize such errors.

Landsat images acquired in the Universal Transverse Mer-

cator (UTM) projection and coordinate system were

re-registered to the Albers equal area projection. To improve

the root mean square (RMS) error to ± 1/2 pixel, we used

additional ground control points (GCPs) collected from

1:50,000-scale topographic maps. Images were resampled with

cubic convolution, which has a better spatial accuracy than the

commonly used nearest neighbour resampling technique

(Shlien, 1979; Park & Schowengerdt, 1982).

Removing or minimizing the presence of ‘noisy’ pixels is

also important. Noise in image data can be caused by several

factors: (1) differences in atmospheric scattering in the visible

bands, (2) differences in water and/or dust particles in the

atmosphere, (3) temporal variations in the solar zenith and/or

azimuth angles, and (4) inconsistencies in sensor calibration

for separate images (Homer et al., 2004). To reduce the noise

caused by atmospheric effects and illumination geometry, we

applied the techniques developed by Homer et al. (2004) for

the US National Land Cover Database 2001. Each image was

normalized for solar irradiance by converting digital number

values to the top-of-the atmosphere reflectance (Chander &

Markham, 2003). This conversion algorithm is ‘physically

based, automated, and does not introduce significant errors to

the data’ (Huang & Townshend, 2003). A test of this technique

on mangrove areas in the Sundarbans (Giri et al., 2007)

showed it to be a reasonable pre-processing method for a large

data base covering several countries in Asia. Owing to the

unavailability of data on atmospheric conditions for the

region, atmospheric correction was not performed. Cloud-

covered areas were replaced by additional Landsat scenes

obtained during the same period.

Classification

Many image classification and change detection techniques

have been described in the literature (Singh, 1989; Civco et al.,

2002). For change analysis, Civco et al. (2002) compared four

techniques – traditional post-classification, cross-correlation

analysis, neural networks and object-oriented classification

Table 1 Secondary data collected and used

during the study.
Secondary data Country

Mangrove forest maps prepared using Landsat data Thailand, India

Forest classification maps 1 : 250,000 using

field inventory data

Sri Lanka, Malaysia, Indonesia

Land use/land cover maps at 1 : 1,000,000 scale Bangladesh, Malaysia

Topographic maps, 1 : 100,000 scale Sri Lanka, Thailand

QuickBird, IKONOS Selected areas in Thailand,

Bangladesh, India and Sri Lanka

Atlas of Mangrove Wetlands of India India

Mangrove forest distribution and dynamics
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– and concluded that each method has advantages and

disadvantages, and there is no single best way. Considering

the large volume of data acquired from different time intervals,

we adopted the traditional post-classification approach.

For image classification, we used a hybrid supervised and

unsupervised classification approach because there was insuf-

ficient ground truth for a purely supervised classification. The

images were not enhanced prior to unsupervised classification

and the thermal band (band 6) was excluded from the

classification. Water bodies were mapped with a supervised

classification. We then used an ISODATA clustering algorithm

within ERDAS Imagine to generate 50 spectral clusters at the

99% convergence level. Through iterative labelling, mangrove

classes were identified and labelled with reference to field data

and high-resolution QuickBird and IKONOS imagery, and

then merged into a single mangrove category. Four land cover

classes were generated: mangrove, non-mangrove, barren lands

and water bodies (Table 2). Post-classification editing such as

‘recoding’ was performed to remove obvious errors. Each

classified image was resampled to 50 m to be consistent with

MSS data. However, this resampling did not improve the

spatial details of MSS data. Finally, four classification images

were produced, one each for 1975, 1990, 2000 and 2005.

Change analysis

We used a post-classification change analysis technique to

compare classification results from the four epochs of imagery.

This approach is probably the most common and intuitive

change detection method, because it provides ‘from–to’ change

information. However, our approach may have three sources

of uncertainty: (1) semantic differences in class definitions

between maps, (2) positional errors, and (3) classification

errors. To minimize the semantic differences in class defini-

tions, we specified the same number of classes for all four

dates. To minimize positional errors, additional GCPs were

selected and RMS error was reduced to ± 1/2 pixel as explained

in the pre-processing section. Post-classification editing (i.e.

recoding) using secondary data helped to correct classification

errors. In doing so, problematic areas were identified visually

and using area of interest (AOI) in ERDAS Imagine followed

by recoding. However, some positional and classification

errors might still remain.

Change maps were generated by subtracting the classifica-

tion maps between six periods: 1975–90, 1975–2000,

1975–2005, 1990–2000, 1990–2005 and 2000–05. The change

areas were visually interpreted to identify the factors (e.g.

agriculture, aquaculture, urban development) responsible for

the change. Each of the change areas was checked individually

during the workshop by at least two experts to identify the

causes of change. Published maps and high-resolution satellite

data such as QuickBird and IKONOS were used for the

purpose. A 3-pixel by 3-pixel window was used to identify the

dominant land-cover types in the high-resolution satellite data.

Once the mangrove/non-mangrove areas were calculated for

each period, the rate of deforestation was calculated by using

the following equation suggested by Puyravaud (2003):

R ¼ 1

t2 � t1

� �
ln

A2

A1

� �
ð1Þ

where R is the rate of deforestation, A1 is the area at an initial

time t1 and A2 is the area at a later time t2. Maps and

photographs collected during the field visit, along with high-

resolution IKONOS and QuickBird satellite data, were anal-

ysed visually to discover the causes of deforestation. This

involved visual analysis of change maps and reference data.

Validation

Qualitative validation was performed with the help of local

experts and high-resolution satellite data such as QuickBird

and IKONOS. We divided the entire area into 500 · 500 grids

and checked each grid visually to identify and correct ‘gross’

errors inherent in the classified maps. Quantitative accuracy

assessment was not performed because sufficient ground truth

data for historical dates are not easily available. A workshop

was held at which local experts validated the change areas and

the causes of change. The experts provided ground truth data

and photographs for a number of sites throughout the study

area.

RESULTS AND DISCUSSION

To meet the need for accurate and reliable information on the

present extent of mangrove forests of the region, our study

prepared a geospatial data base of mangrove distribution for

the year 2005 using Landsat data. The data base provides an

up-to-date and consistent overview of the extent and distri-

bution of mangrove forests with better spatial and thematic

details than previous data sets.

We estimate that in 2005 there were approximately 1.67

million ha of mangrove forest remaining in the region. This

estimate is higher than previous estimates by Spalding et al.

(1997), probably because it is based on moderate-resolution

Landsat data on which we were able to identify many small

(0.81 ha), previously unidentified, mangrove areas. However,

we did not map mangrove patches smaller than the 1 ha,

which was the minimum mapping unit (MMU) used for the

analysis. We assumed that mangrove areas smaller than our

MMU have no significance on the total mangrove area of the

region.

Table 2 Class definitions.

Classes Supervised classification class definitions

Mangrove Areas covered by both closed and open

mangrove forests

Non-mangrove Areas covered by croplands and other land uses

Barren lands Areas devoid of vegetation, e.g. sand dunes,

sediments or exposed soil

Water bodies Areas of open water with no emergent vegetation,

e.g. channels and waterways

C. Giri et al.
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The largest percentage of the remaining mangrove forest

areas in our study area in 2005 is located in Burma

(551,361 ha; 33%), followed by Bangladesh (438,764 ha;

27%), India (337,727 ha; 21%), Thailand (168,910 ha; 10%),

Malaysia (70,560 ha; 4%), Indonesia (68,194 ha; 4%) and Sri

Lanka (10,379 ha; 1%). The largest expanse of mangrove

forests is located in the Sundarbans (along the border between

Bangladesh and India); the Ayeyarwady Delta, Rakhine, and

Tahinthayi (Burma); Phang Nga and Krabi (Thailand); and

Matang (Malaysia).

The largest tracts of the remaining forests of the region are

in different states and conditions owing to different threats

and management interventions. Despite having the highest

population density in the world in its immediate vicinity, the

areal extent of the mangrove forest in the Sundarbans has not

changed significantly in the last 25 to 30 years (Giri et al.,

2007). A strong commitment from the governments of India

and Bangladesh, in the form of various protection measures,

such as forest reserves, wildlife sanctuaries, national parks and

international designations, is responsible for keeping the

Sundarbans mangrove forest relatively intact. This is an

excellent example of the coexistence of human, terrestrial and

aquatic plant and animal life. In Phang Nga, mangrove forests

are found all along the coast and on some larger islands,

including Ao Thalane and Ao Luk. Many areas in Phang Nga

and Krabi are protected under the conservation areas

network. The Ao Phang Nga National Park covers an area

of 4000 ha and represents the largest tract of remaining

original primary mangrove forests of Thailand. All three

mangrove areas in Burma are under immense pressure from

human exploitation. Forests that are not protected represent

some of the most degraded or destroyed mangrove forests of

the region. Matang forest in Malaysia is intensely managed

and is considered to be one of the best managed mangrove

forests in the world. The forest, consisting mainly of

Rhizophora apiculata, is the largest tract of mangrove forest

in Peninsular Malaysia (c. 40,000 ha). Approximately 80% of

the area is managed through a sustainable-yield production

system with a 30-year rotation cycle. Smaller patches of

mangrove forests are found in all seven countries with many

isolated patches in Sri Lanka and India. Many of these smaller

patches are under immediate threat from human exploitation.

Unfortunately, the majority of these forests are not protected

under the existing protected areas network. In some cases,

these small patches of forests are managed by local commu-

nities.

Time-series analysis of MSS, TM and ETM+ data has

revealed a net loss of 12% of mangrove forests in the region

from 1975 to 2005 (Fig. 1). The net deforestation resulted

because the deforestation rate outpaced the afforestation/

reforestation rate (Fig. 2). The overall net loss is lower than the

country average for Thailand, Malaysia and Indonesia, because

other parts of these countries are undergoing massive changes.

For example, in Thailand, the Andaman coast experienced

much less development pressure than the Gulf of Thailand

(outside of our study area). Approximately 80–90% of

mangrove forests along the Gulf of Thailand have disappeared

in the last 30 years (Thampanya et al., 2006).

This rate of deforestation was not uniform through space

and time. The annual rate of deforestation during 1975–2005

was highest (c. 1%) in Burma compared with Thailand

()0.73%), Indonesia ()0.33%), Malaysia ()0.2%) and Sri

Lanka ()0.08%). In contrast, mangrove forests in Bangladesh

(+0.14%) and India (+0.04%) remained essentially unchanged

or slightly expanded during this period. The increase in

mangrove area in India that we found is consistent with

reports from the Forest Survey of India which stated that

mangrove forest cover has increased or remained unchanged

since 1995. However, almost all the mangrove areas in India

are severely degraded with reduced or negligible vegetation

cover (Wilkie & Fortuna, 2003). Bangladesh has started

ambitious mangrove rehabilitation programmes, and man-

grove forest areas have also increased by aggradation (Giri

et al., 2006). The reforestation programmes in both India and

Bangladesh were initiated by the government and local

communities.

Net deforestation peaked at 137,000 ha (approximately 1%

year)1) during 1990–2000, increasing from 97,000 ha

(0.2% year)1) during 1975–90, and declining to 14,000 ha

(0.06% year)1) during 2000–05. The main reason for the

decline in the rate of deforestation is that the intensity of

aquaculture expansion appears to have levelled off in all the

countries except Burma and Indonesia. The highest rate of

deforestation during 1976–90 occurred in Thailand (1.8%).

The rate of deforestation in other countries was relatively low

during this period. However, during 1990–2000, the rate of

deforestation was highest in Burma (2.9%) and Malaysia

(1.3%). Similarly, the deforestation rate during 2000–05 was

highest in Indonesia (0.75%), mainly because of the expan-

sion of aquaculture.

At the local level, both deforestation and forest regeneration

occurred with varying intensities, with localized hotspots of

rapid change. We identified the major deforestation fronts that

are located in the Ayeyarwady Delta, and Rakhine and

Tahinthayi provinces of Burma; Sweetenham and Bagan in

Malaysia; Belawan, Pangkalanbrandan, and Langsa in Indone-

sia; and Southern Krabi and Ranong in Thailand (Fig. 1).

Major reforestation and afforestation areas are located on the

south-eastern coast of Bangladesh, and in Pichavaram, Devi

Mouth, and Godavari in India.

The major causes of deforestation were agricultural expan-

sion (81%), aquaculture (12%) and urban development (2%).

As expected, causes of deforestation also varied with space and

time (Fig. 3 & Table 3). In Thailand, 41% (16,815 ha) of

mangrove forests have been converted to aquaculture and

another 2% (710 ha) have been converted to urban develop-

ment. However, the largest factor was agricultural expansion

(50%, 20,300 ha). Other factors, such as mining, are also

responsible for deforestation in Thailand. These land conver-

sions are particularly evident in Phuket, Ranong and southern

Krabi. In Indonesia, 63% (20,960 ha) of the mangrove forests

have been cleared for shrimp ponds and another 32%

Mangrove forest distribution and dynamics
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Figure 1 Change in mangrove forest cover change from 1975 to 2005.
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(10,625 ha) for agricultural lands. Conversion to urban

development accounted for approximately 4% (1420 ha).

The large percentage of change in Malaysia is primarily

associated with the 30-year rotation cycle of clearcutting

mangrove forests in Matang Mangrove Reserve. The forests are

also being converted to urban areas.

The deforestation in Burma is due to the overexploitation of

mangrove forests for fuel wood collection, charcoal production

and illegal logging, followed by encroachment for paddy

cultivation. We estimated that 98% (293,035 ha) of mangrove

deforestation in Burma during the period 1975–2005 was due

to agricultural expansion (Fig. 4). During the same period,

approximately 2% (6870 ha) of forests were converted to

aquaculture. In the Ayeyarwady Delta, forests are also being

destroyed or degraded by erosion and sedimentation (Barbier,

2006); the delta has the fifth largest sedimentation in the

world.

CONCLUSIONS

The results of our study will be useful in several ways. First, we

improved our understanding of the distribution of mangrove

forests in the region, and assessed the rates and causes of

deforestation. The geo-spatiotemporal data base generated by

this study provides an up-to-date, consistent and unbiased

account of the extent, distribution and dynamics of mangrove

forests of the region, and has better spatial and temporal detail

than the information previously available. Second, an unbiased
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Figure 3 Spatial distribution of mangrove deforestation in Ayeyarwady Delta, Burma, during 1975–90, 1990–2000 and 2000–05.
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account of the status and trends of mangrove forest areas can

support region-wide decision-making on the distribution of

resources for the conservation and rehabilitation of mangrove

forests. Third, our regional analysis is a starting point from

which to assess the role of mangrove forests in saving lives and

property from natural disasters such as the Indian Ocean

tsunami of 2004.

Monitoring deforestation at a regional scale using moderate-

resolution satellite images over a long period of time requires

the processing of large volumes of data. We used simple but

efficient methods to analyse these data. This approach applied

semi-automated image analysis techniques to assess present

status and to monitor the rates and causes of change, and it

does so over a large area covering tsunami-affected regions of

Asia. Our analyses show the potential of producing consistent

and timely mangrove forest data bases of the region using the

historical archive of Landsat data.

Unlike many other areas in Asia, conversion to aquaculture

is not the major cause of mangrove deforestation in the region.

At the regional level, conversion to agriculture is the dominant

factor, followed by conversion to aquaculture and urban

development. However, the degree to which these factors play

a role varies according to space and time. For example,

agriculture is the major factor in all the countries except in

Indonesia, where aquaculture is the dominant factor. In

Thailand, aquaculture accounts for 40% of mangrove defor-

estation, which is much higher than the regional average of

12%. Similarly, urban development is more dominant in

Malaysia.

Deforested and degraded mangrove areas can be rehabili-

tated and restored in some cases (Fig. 5). The identified

deforestation areas can be used to select potential rehabilita-

tion sites together with a matrix of criteria such as extent,

accessibility and socio-economic factors. Not all deforested

areas can be restored back to mangrove forests. For example,

urban areas are very unlikely to revert back to mangrove forest.

The majority of agricultural areas and some of the aquaculture

areas can be reforested. Other abandoned aquaculture areas are

very difficult to rehabilitate or regenerate, mainly because these

sites are highly degraded by pollution and pesticides. Delin-

eations of degraded mangrove forests are needed to promote

regrowth and enrichment planting.

Table 3 Conversion of mangrove forest to other land use/cover categories.

Country

Area converted [ha (%)]

To aquaculture To agriculture To urban To other

TotalArea

± Error

estimate Area

± Error

estimate Area

± Error

estimate Area

± Error

estimate

Thailand 16,816 (41) 1009 (3) 20,296 (50) 1826 (5) 710 (2.1) 15 (2) 2745 (7) 220 (1) 40,567

Malaysia 1605 (7) 96 (0) 9605 (43) 864 (4) 4532 (20) 615 (14) 6557 (29) 525 (2) 22,299

Indonesia 20,956 (63) 1257 (4) 10,628 (32) 956 (3) 1420 (4) 60 (4) 0 (0) 0 (0) 33,004

Burma 6868 (2) 412 (0) 293,035 (98) 26,373 (9) 66 (0) 0 (0) 122 (0) 10 (0) 300,091

Bangladesh 1070 (11) 64 (1) 7193 (77) 647 (7) 0 (0) 0 (0) 1046 (11) 84 (1) 9309

India 7554 (22) 453 (1) 17,179 (50) 1546 (4) 168 (0) 1 (0) 9178 (27) 734 (2) 34,079

Sri Lanka 134 (1) 8 (0) 12,558 (92) 1130 (8) 26 (0) 0 (0) 901 (7) 72 (1) 13,619

Total 55,004 (12) 3300 (1) 370,495 (82) 33,344 (7) 6921 (2) 1437 (20) 20,549 (5) 1644 (0) 452,969

Figure 4 Major causes of mangrove deforestation, by country.

Figure 5 With some management intervention, this abandoned

shrimp pond can be rehabilitated (photo Chandra Giri).
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