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abstract: A mathematical model is presented that describes a sys-
tem where two consumer species compete exploitatively for a single
renewable resource. The resource is distributed in a patchy but homo-
geneous environment; that is, all patches are intrinsically identical.
The two consumer species are referred to as diggers and grazers,
where diggers deplete the resource within a patch to lower densities
than grazers. We show that the two distinct feeding strategies can
produce a heterogeneous resource distribution that enables their co-
existence. Coexistence requires that grazers must either move faster
than diggers between patches or convert the resources to population
growth much more efficiently than diggers. The model shows that
the functional form of resource renewal within a patch is also im-
portant for coexistence. These results contrast with theory that con-
siders exploitation competition for a single resource when the re-
source is assumed to be well mixed throughout the system.

Keywords: exploitation competition, foraging, coexistence, invasion
analysis.

Understanding the mechanisms that allow species co-
existence remains a key topic in community ecology. The
mathematical model of Volterra (1926) was the first to
suggest that the indefinite coexistence of more than one
species on the same resource was impossible. This result
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was then expanded, and the competitive exclusion prin-
ciple (Hardin 1960) was proposed, which stated that n
species could not coexist on !n resources. In order to apply
this principle, a clear way in which to identify distinct
resources and consumers is required (Haigh and Maynard
Smith 1972; Schoener 1974; Levins 1979), as well as a clear
definition of coexistence (Koch 1974; Hsu et al. 1978;
Armstrong and McGehee 1980; Smith and Waltman 1995).
There have been numerous theoretical studies where mod-
els have apparently violated the competitive exclusion
principle. Competing species can coexist if mechanisms
are present that effectively increase the number of re-
sources present and/or allow populations to exhibit stable
cyclic behavior. Examples include resource partitioning of
the same prey item (Haigh and Maynard Smith 1972;
Schoener 1974), interspecific variation during the re-
source’s life cycle (Briggs 1993; Briggs et al. 1993), life-
history variation among the consumers (McCann 1998),
temporal fluctuations in environmental conditions (Koch
1974; Levins 1979; Turelli 1981; Abrams 1984; Chesson
1990), disturbance (Hastings 1980), interference compe-
tition (Vance 1985; Fishman 1997), and spatial structuring
of the habitat (Tilman 1994).

In this article we investigate whether two species (or
phenotypes) that differ in their strategies for resource ex-
ploitation can coexist in a system where they both utilize
the same resource. We assume the resource is distributed
in a patchy but homogeneous environment; that is, all
patches are intrinsically identical. The two species differ
in the degree to which they deplete resources within a
patch and hence differ in their feeding strategy. The species
that depletes the resource to lower levels is termed the
“digger” species; the other is termed the “grazer” species.
An important assumption we make is that the two species
interact only through exploitation competition (Milinski
and Parker 1991). There is no direct interference between
individuals, all interactions occur through each species’
influence on a shared food resource. Schmitt (1996) has
studied an example of such a system, where two species
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of benthic marine snails, Tegula aureotincta and Tegula
eiseni, compete for microalgae. Differences in the foraging
morphologies of the two snails have been shown to have
different effects on the distribution of the algal resource.
Tegula eiseni was found to be capable of reducing algal
densities to lower levels than T. aureotincta. Nectarivores
are another example of a group of consumers that often
appear to interact through exploitation competition. Lav-
erty and Plowright (1985) studied a system where two
species of bumblebee and a hummingbird compete for
nectar in jewelweed. In this example the consumer species
were found to differ in the depth to which they could
drain the nectar spur and also the rate at which they visited
flowers (Laverty and Plowright 1985).

Possingham (1987) constructed a mathematical model
of nectarivore competition (which was assumed to be ex-
ploitative) and showed that two consumer species, which
differed in their ability to deplete nectar from a flower,
could coexist on a single flower species. Coexistence was
dependent on the competitive ability of both species,
which was defined as the mean net energy gained per
calorie extracted from a flower, divided by the cost of using
each flower. Wilson et al. (1999) fitted a similar mathe-
matical model, which described the dynamics of two ben-
thic grazers competing for algae, to data collected by
Schmitt (1996). Although the model required a number
of parameters, the data were sufficient to give estimates
to all parameters but one. The best fit was found to lie
very close to a region of coexistence. Given the uncertainty
in the fitted parameters, the model predictions were not
inconsistent with observed coexistence in the field
(Schmitt 1996). In this article we have reviewed, gener-
alized, and extended the work of Possingham (1987) and
Wilson et al. (1999) by investigating how the model of
resource renewal affects coexistence.

We present a mathematical model that describes the
dynamics of the two consumer species and the shared
resource. The habitat is assumed to be made up of a large
number of identical patches, each containing a renewing
resource. Each patch is sufficiently small so that its re-
source drops rapidly whenever a consumer visits and then
recovers relatively slowly between visits. Both consumer
species visit patches in a random manner. This form of
consumer-resource interaction has been shown in previous
work to have a stabilizing effect on consumer-resource
dynamics (Nisbet et al. 1997, 1998). We use invasibility
analyses to identify the outcome of exploitation compe-
tition. In most cases one of the two species is predicted
to displace the other; however, coexistence can occur over
a relatively small range of parameter values. It is important
to note that coexistence in our model does not occur
because of any intrinsic patch heterogeneity. Differences
in the resource abundance among patches are created by

the contrasting feeding strategies of the two competing
species and the dynamics of resource renewal. Coexistence
can occur because each consumer does not encounter a
fixed amount of resource when it visits a patch but an
amount that depends on the time since the last consumer’s
visit and its type. Hence, consumers encounter resource
levels described by a probability density function, which
effectively increases the number of resource types. The
digger species can often persist because it can exploit re-
sources that the grazer species cannot reach. The grazer
species can also persist if it moves faster among patches
than the digger species and encounters patches that have
not been recently visited by diggers. In doing so the grazer
species can often reduce the mean resource abundance
within the system so that it stops the diggers from taking
over. We also find that the dynamics of resource renewal
play an important role in determining the outcome of
exploitation competition.

The Model

We consider a habitat that contains a large number of
identical small patches each containing a resource of den-
sity x. There are two species of consumers, which we refer
to as diggers and grazers. Grazers (G) can only consume
resources on a patch whose density exceeds xG, and when
a grazer visits such a patch, its density drops to xG. Diggers
(D) consume resources in a similar manner, reducing the
resources in a patch to level xD. They may eat resources
on patches that have a lower density than that accessible
to the grazers so that . We assume that patch sizex ! xD G

is sufficiently small so the timescale at which patches are
depleted of resources is fast compared with the timescale
of resource renewal (Possingham 1988). A patch can be
in one of two states, depending on the amount of resource
it contains. The state of a patch is dependent on the time
since it was last visited by a consumer and the species of
the last visitor. Patches that have a resource density 1xD

and ! xG are referred to as low-density patches (L-patches),
and patches that have a resource density 1xG are referred
to as high-density patches (H-patches). Consumers are
assumed to move randomly among patches. The resource
in a patch renews according to the following equation:

dx
= r(x). (1)

dt

Hence, renewal is a continuous process that depends on
the current resource density within the patch. Renewal may
be due to local processes (e.g., regrowth or resource pro-
duction) or resource immigration from sources that are
external to the habitat.

As well as their state, patches are also characterized by
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their age, a. The age of an L-patch is the time that has
elapsed since the patch was last visited by a digger. The
age of an H-patch is the time since its density was xG. This
density occurs either when the patch is visited by a grazer
or when the density on an L-patch renews and reaches xG.
Denote by t the time it takes for the resource on an L-
patch to renew from xD to xG. This time interval is obtained
by solving

t

r(x(a))da = x 2 x (2)E G D.

0

Note that , , and all L-patches have anx(0) = x x(t) = xD G

age !t.
In order to describe resource and consumer dynamics,

we keep track of the age distribution of patches. The frac-
tion of the L-patches at time t that are aged between a
and , is nL( ) da. Similar notation is used to rep-a 1 da a, t
resent the age distribution of the H-patches. The fraction
of all patches that are L-patches and the fraction of all
patches that are H-patches at time t are denoted NL(t) and
NH(t), respectively. These fractions can be calculated using

t

N (t) = n (a, t)da, (3)L E L

0

`

N (t) = n (a, t)da. (4)H E H
0

Note that for all time t.N (t) 1 N (t) = 1L H

The resource density within L-patches and H-patches,
which are of age a, are denoted xL(a) and xH(a), respec-
tively. The average resource density within L-patches and
H-patches at time t can be calculated from the following
equations:

t

X (t) = n (a, t)x (a)da/N (t), (5)L E L L L
0

`

X (t) = n (a, t)x (a)da/N (t). (6)H E H H H
0

Resource dynamics are governed by the following equa-
tions:

­n ­nL L1 = 2m(t)n , (7)L
­t ­a

­n ­nH H1 = 2(m(t) 1 n(t))n , (8)H
­t ­a

dxL = r(x ), (9)Ldt

dxH = r(x ), (10)Hdt

where m(t) and n(t) are the rates that all patches are visited
by the digger and grazer populations at time t, respectively.
These four equations are associated with the following
boundary conditions:

n (0, t) = m(t), (11)L

n (0, t) = n (t, t) 1 n(t)N (t), (12)H L H

x (0) = x , (13)L D

x (0) = x . (14)H G

Equation (11) expresses the fact that the rate of creation
of age-0 L-patches at any time is equal to the rate that all
patches are visited by diggers. Equation (12) arises because
the rate of creation of age-0 H-patches is equal to the rate
that L-patches change their state (which occurs when they
have survived to age t) plus the rate that grazers visit H-
patches.

The variables D(t) and G(t) represent the density of
diggers and grazers, respectively. Because all individuals in
the system move randomly from patch to patch and move-
ments are independent of the presence of other individ-
uals, patches are visited by the consumers at a rate that is
proportional to the number of consumers. When individ-
ual diggers and grazers are searching for patches, they
encounter them at rates jD and jG, respectively. Both spe-
cies exhibit a Holling Type II functional response when
seeking and handling the resource. The parameter h is the
average time a consumer takes to handle a unit of resource,
which we assume is the same for both consumer species.
If the number of patches is large compared to the number
of consumers, then the patch-encounter rates exerted by
the digger and grazer populations can be approximated
by the following (Nisbet et al. 1997, 1998):

j D(t)D
m(t) = , (15)

1 1 j h[N (t)X (t) 1 N (t)X (t) 2 x ]D L L H H D

j G(t)G
n(t) = . (16)

1 1 j hN (t)[X (t) 2 x ]G H H G
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Note that in this model grazers may visit patches that
contain a resource density too low for them to consume.

We assume constant conversion efficiencies of resource
to consumer numbers, «D and «G. Both species have con-
stant per capita death rates, dD and dG. Consumer dynamics
come from the two ordinary differential equations (ODEs),

dD « j (N X 1 N X 2 x )D D L L H H D= 2 d D, (17)D[ ]dt 1 1 j h(N X 1 N X 2 x )D L L H H D

dG « j N (X 2 x )G G H H G= 2 d G. (18)G[ ]dt 1 1 j hN (X 2 x )G H H G

Note that we have assumed there is no direct intraspecific
or interspecific competition for the resource in these equa-
tions. Consumer growth rates are only directly regulated
by the distribution of the resource, which is regulated by
the two populations.

Invasion Analysis

In this section we examine under what conditions, if any,
the two consumer species can coexist. To do this we use
the technique termed “invasion analysis” (MacArthur and
Levins 1967; Turelli 1981). We first let one species establish
itself within the environment and come to equilibrium.
We next examine whether the population size of the second
species will increase when it is placed within the environ-
ment at low densities (i.e., we see whether it can invade).
We then repeat this with the role of both species reversed.
Coexistence occurs when both species can invade each
other when the resident is well established.

To show coexistence is possible, we need to show that
both species can become well established in the absence
of the other (Turelli 1981). To show this is indeed true for
the model presented here, we rewrite the model in terms
of coupled time-dependent ODEs and use this formulation
to show that there exists a unique globally stable nontrivial
equilibrium population size and resource distribution (see
app. A). Stability of the equilibrium with only one con-
sumer present is assumed in the analysis to follow.

Grazers Invading Diggers

First, we assume that only diggers are present and the
system is at equilibrium. We can calculate resource den-
sities within patches using andx (a) = x(a) x (a) =L H

, where x(a) is the solution to subjectx(a 1 t) dx/da = r(x)
to . Because movement among patches is ran-x(0) = xD

dom, all patches, irrespective of their age or state, expe-
rience the same risk of a visit from a digger. As a result,

the distribution of patch ages is described by an expo-
nential density function (Nisbet et al. 1997). The associated
steady state distributions for nL( ) and nH( ) are de-a, t a, t
fined and given by

∗ ∗ ∗n (a) = m exp (2m a) 0 ≤ a ≤ t, (19)L

∗ ∗ ∗n (a) = m exp [2m (a 1 t)] a ≥ 0, (20)H

where is the equilibrium patch visitation rate of the∗m

digger population. Later we will show how this rate can
be calculated.

The average resource density in patches at steady state,
which we denote , can be calculated from the above∗XD

steady state distributions:

t `

∗ ∗ ∗X = n (a)x (a)da 1 n (a)x (a)da, (21)D E L L E H H
0 0

`

∗ ∗= m exp (2m a)x(a)da. (22)E
0

We also know from equation (17) that at steady state,

∗ ∗ ∗ ∗N X 1 N X = Q 1 x , (23)L L H H D D

where and the star notation in-Q = d /[j (« 2 hd )]D D D D D

dicates steady state values. The left-hand side of equation
(23) is simply the average resource density among all
patches, . This density must be 1xD, which means QD

∗XD

must be positive or equivalently . If this condition« 1 hdD D

is not true, the digger population cannot persist. When
we combine equation (22) with equation (23) we get an
implicit formula for calculating , namely,∗m

`

∗ ∗m exp (2m a)x(a)da = Q 1 x . (24)E D D
0

Equation (23) tells us that the average density of resource
among all patches, when only diggers are in the system,
is independent of the assumptions on resource renewal.
However, the fraction of patches that are L-patches and
the fraction that are H-patches, at equilibrium, is depen-
dent on the assumption about resource renewal. This de-
pendence can be seen by noting that the patch-visiting rate
of the diggers, , is dependent on x(a) in equation (24).∗m

Grazers can invade if, in equation (18), , whendG/dt 1 0
the resource is in the steady state distribution associated
with the digger-only state. This is true when

∗ ∗Q ! N (X 2 x ), (25)G H H G
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where . We can expand the previousQ = d /[j (« 2 hd )]G G G G G

equation to give the following condition for invasion:

`

∗ ∗Q ! m exp (2m a)(x(a) 2 x )da. (26)G E G
t

In order to determine whether the grazer species can in-
vade the digger species when resources renew according
to some function r, we first evaluate the steady state patch-
visitation rate of the digger population, , using equation∗m

(24). Next, we use this visitation rate in equation (26) and
see whether the invasion condition is satisfied.

Diggers Invading Grazers

When only grazers are present and the population has
reached steady state, all patches have a resource density
of at least xG, so and . From equation (18),∗ ∗N = 0 N = 1L H

we know that ; hence,∗ ∗N (X 2 x ) = QH H G G

∗X = Q 1 x (27)H G G

is the average resource density among patches. Diggers can
invade the system if

∗ ∗ ∗ ∗Q ! N X 1 N X 2 x . (28)D L L H H D

Substituting equation (27) into equation (28) gives the
following invasion condition:

Q ! Q 1 x 2 x , (29)D G G D

which is independent of the assumption on resource re-
newal. The important feature for invasion is the difference
in the depletion levels of the two competitors.

Results

In this section we investigate three models that describe
resource renewal. For each of these models, we determine
whether coexistence of the grazer and digger species is
possible using the invasion conditions derived in the pre-
vious section.

Linear Renewal

The simplest assumption about resource renewal is that it
occurs at some constant rate, r0, and resources remain
viable until they are consumed. The renewal function is

r(x) = r . (30)0

Suppose there are only diggers present, then the resource
density on a patch of age a is

x(a) = x 1 r a. (31)D 0

The time for the resource on a patch to renew from level
xD to level xG is . Substituting the abovet = (x 2 x )/rG D 0

renewal function into equation (24) gives .∗m = r /Q0 D

When this rate is then substituted into equation (26), we
get the following condition for grazers to invade diggers,

Q ! Q exp [2(x 2 x )/Q ]. (32)G D G D D

Note that this condition is independent of the renewal
rate, r0. The condition for diggers to invade grazers is given
by equation (29). It can be easily shown that for all

, there exist pairs ( ) that satisfy both in-x 1 x Q , QG D D G

vasion conditions. Hence, if resource renewal is linear and
unbounded, then diggers and grazers may coexist. An ex-
ample of this model is presented in figure 1A, which shows
when coexistence occurs and when either the digger or
the grazer excludes the other. We have confirmed the lo-
cations of the boundaries in figure 1A using an explicit
numerical solution to the dynamic equations.

Free-Space Renewal

An alternative formulation for the rate of renewal is

x
r(x) = r 1 2 . (33)0( )K

This can describe a number of situations where, in the
absence of consumers, the resource density approaches
some density, K. One example of such a situation is
when resources renew at a constant rate, as in the pre-
vious model, but now resources become nonviable at
some constant rate. An example of this process is aerial
insects that have fallen onto water being washed up
along a riverbank at a constant rate and then washed
away at some constant per capita rate (Davies and
Houston 1981). Alternatively, this model can be used
to describe the process where resource particles enter a
patch at a fixed rate but only establish within the patch
if they happen to land on a section of the patch that is
not currently occupied by another resource particle.
This process is often referred to as free-space recruit-
ment and has been applied to models that describe pop-
ulation dynamics of benthic marine invertebrates (e.g.,
Roughgarden 1997 and references within). In this case
the parameter K is often referred to as the patch-car-
rying capacity.

This renewal model gives the following:
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Figure 1: Coexistence regions when resource renewal is (A) linear and
(B) free space (carrying capacity, ). In both examples, the diggerK = 1
and grazer resource thresholds are given by and .x = 0.1 x = 0.5D G

x(a) = K 2 (K 2 x ) exp (2r a/K), (34)D 0

K K 2 xD
t = ln , (35)( )r K 2 x0 G

r0∗m = (K 2 x 2 Q ). (36)D DQ KD

The condition for grazers to invade diggers can be shown
to be

2(K2x )/QD D

K 2 xDQ ! Q . (37)G D( )K 2 xG

Again, note that this condition is independent of the pa-
rameter r0. The rate at which the resource approaches the
carrying capacity has no influence on whether the digger
population will be invaded; however, the success of in-
vasion is influenced by the carrying capacity. The presence
of a carrying capacity means we have extra conditions
about when the grazers and diggers can persist in the
system. From equation (17) it can be shown that the
growth rate of the digger population is never positive and,
hence, cannot persist if . Similarly, the grazerQ 1 K 2 xD D

population cannot persist if . Thus, for anyQ 1 K 2 xG G

given K, there now exists a region in the ( ) planeQ , QD G

where neither the digger nor the grazer can persist. As
with the previous model on resource renewal, it can be
shown that for this model, pairs ( ) exist that satisfyQ , QD G

both invasion conditions; therefore, coexistence is possible.
An example of the coexistence region for this model is
presented in figure 1B.

Three examples of consumer-resource dynamics are
presented in figure 2. The grazer species is characterized
by the same parameter values in each example (table 1)
and is associated with a Q value of . GrazersQ = 0.15G

encounter patches twice as fast as diggers, and both diggers
and grazers live, on average, one time unit (table 1). The
three examples differ in the Q value associated with the
diggers: (A) , (B) , and (C) . InQ = 0.4 Q = 0.5 Q = 0.6D D D

all three examples, the grazer species is assumed to be well
established before an inoculum of diggers is introduced.
The dynamics are qualitatively different in each of the three
examples, and they match the predictions (fig. 1B). The
steady state resource density when only grazers are present
is resource units. The steady state resource den-∗X = 0.65G

sities for the three examples, when only diggers are present,
are (A) , (B) , and (C) resource∗ ∗ ∗X = 0.5 X = 0.6 X = 0.7D D D

units. Although in figure 2B, the grazers clearly∗ ∗X 1 XG D

coexist with the diggers. The dynamics presented in figure
2 were generated by numerically solving a set of six coupled
delay differential equations (app. B).

Logistic-Type Renewal

A more general model that can be used to describe resource
renewal is

j

x
ir(x) = r x 1 2 , (38)0 ( )K

where i and j are nonnegative constants. The linear renewal
model is recovered when , and the free-spacei = j = 0
model is recovered when and . When ,i = 0 j = 1 i = j = 1
resource renewal is logistic, which is a commonly adopted
model to describe the growth of a wide range of prey
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Figure 2: Consumer-resource dynamics for the three cases presented in
figure 1B (solid circles). In all examples , , , andK = 1 x = 0.1 x = 0.5D G

. The Q-values associated with the digger species are (A)Q = 0.15G

, (B) , and (C) . Each example shows the meanQ = 0.4 Q = 0.5 Q = 0.6D D D

resource level, (dotted line); digger density, D (solid thickN X 1 N XL L H H

line); and grazer density, G (solid thin line).

Table 1: Parameter values used in all the simulations
presented

Parameter Description Value

K Patch carrying capacity 1
r0 Maximum renewal rate 20
h Resource handling time .01
xD Digger resource threshold .1
xG Grazer resource threshold .5
dD Digger mortality rate 1
dG Grazer mortality rate 1
jD Digger patch encounter rate 100
jG Grazer patch encounter rate 200

organisms. There are two important properties of this
model. When the resource density within a patch willj 1 0
tend toward a carrying capacity K, and when thei 1 0
resource does not renew after it has been completely de-
pleted from a patch. From the previous model, we have
seen that the presence of a carrying capacity means that
species characterized by high Q values cannot persist in
the system regardless of the presence or absence of other
species. The second property is particularly important if
consumers deplete all resources from a patch because even-
tually they will drive themselves to extinction.

An analytic solution to the invasion condition, equa-
tion (26), is generally not possible for this model and

so must be evaluated numerically. Figure 3 shows four
examples of the renewal function, equation (38), and
the form of the age-dependent change in resource den-
sity that results. In figure 4 we present the coexistence
regions associated with the renewal functions presented
in figure 3. Coexistence is possible for all resource-re-
newal functions presented, and the region of coexistence
varies depending on the assumption of resource re-
newal. The region is smallest when renewal is described
by the free-space model and is largest when renewal is
described by the third model. Numerical results again
show that the condition for grazers to invade diggers
is independent of the renewal parameter, r0.

Discussion

In this article we have shown that in some situations it is
possible that species that compete exploitatively for a com-
mon resource may coexist. This result is in contrast to
previous studies of exploitation competition that assume
the resource is well mixed within the habitat (e.g., Fishman
1997). The fact that we found the possibility of coexistence
in our model is not all that surprising. Our model is a
subtle example of resource partitioning, which, as was
noted in our introduction, has been shown to promote
coexistence. The two consumers are essentially competing
within a system that contains two types of resources,
namely L-patches and H-patches. An important result
from our model is that spatial and temporal changes in
the resource distribution and, hence, the two types of patch
are created by the foraging behaviors of the consumers
and not from any intrinsic differences among resource
patches. Although the abundance of L-patches and H-
patches are correlated at any time, knowledge of the abun-
dance of one does not necessarily specify the abundance
of the other; hence, coexistence may occur in this system
(Haigh and Maynard Smith 1972).

The situation presented here corresponds to the idea of
an included niche (Miller 1964, 1967), where in this case
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Figure 3: Examples of the logistic-type resource-renewal model as described by equation (38). Also shown are the associated renewal trajectories,
x(a). Parameter values for each example are as follows: (A) , ; (B) , ; (C) , ; and (D) , . In all examples, thei = 0 j = 1 i = 1 j = 1 i = 2 j = 1 i = 1 j = 2
digger and grazer resource thresholds are given by (filled dots) and (open dots), and the carrying capacity .x = 0.1 x = 0.5 K = 1D G

the niche of the grazer (i.e., the densities of resource that
can be accessed) is a subset of the niche of the digger.
Coexistence may be possible, provided the grazer species
is more efficient than the digger species at utilizing high-
density resource patches (i.e., it is a better competitor

within its restricted niche). We have shown that if the
consumer with the restricted niche is sufficiently efficient,
then it can exclude the consumer that has the greater niche.

The parameter r0 that appears in all three renewal mod-
els considered in this article has no influence on the region
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Figure 4: Coexistence regions when resource renewal is described by the
logistic-type functional form. The Digger only and Digger and Grazer
boundary correspond to the four cases presented in figure 3: (A) solid
thick line, (B) long-dashed line, (C) short-dashed line, and (D) solid thin
line.

of coexistence. The effect of r0 is to alter the timescale of
resource renewal, which affects population sizes but not
the essential qualities of the dynamics that influence co-
existence. Thus, the rate at which a resource renews has
no bearing on which species are expected to persist in a
habitat. What is important for determining species com-
position is the manner in which the resource renews within
patches. The functional form of resource renewal defines
the conditions under which the grazer is able to persist in
a habitat that is occupied by diggers. The region of co-
existence is increased when the relative rate of renewal in
the H-patches compared to the L-patches is increased.
When a free-space renewal function is assumed, the re-
source increases much faster in the L-patches compared
to the H-patches, and in this case the region of coexistence
is small. However, if the rate of renewal is high in H-
patches (e.g., fig. 3C), then the region of coexistence is
significantly increased (fig. 4). Although in this case it may
take some time for patches to become accessible to grazers
after they have been visited by a digger, if diggers move
slowly or have a low population size, then grazers can
persist if they are sufficiently efficient (i.e., they make bet-
ter use of the high resource-renewal rates of the H-
patches). By either moving quickly through the habitat or
having high population growth rates, the grazers persist
even though they may encounter patches that they cannot
utilize. However, if diggers are not efficient consumers,

then their persistence depends on the presence of high-
density patches, which may become sufficiently rare in the
presence of grazers such that diggers are driven to
extinction.

A similar mechanism that shares many features with
ours was studied by Briggs (1993) in the context of insect
parasitoids. In her system two parasitoid species attack
different developmental stages of a single host species.
Briggs (1993) presents an age-structured model of the sys-
tem and shows that the two parasitoids could coexist if
the parasitoid that utilizes the later host stage could suc-
cessfully attack hosts that had been attacked earlier by the
other parasitoid. Like the results presented here, it was
found that the outcome of competition was dependent on
the consumer efficiency of both parasitoid species, which
was defined in a similar manner as the Q value of the
diggers and grazers in this article.

In this article we have shown that the consumer’s effect
on the distribution of resources, and not necessarily the
mean abundance of resources, is important for coexis-
tence. This result was also shown by Mittler (1997), who
investigated a model of predator-prey dynamics that over-
laps to some extent with the model presented in this article.
Predators did not necessarily consume prey in their en-
tirety, leaving smaller prey items that may be more effi-
ciently consumed by other predators. Mittler (1997)
showed that a rich range of dynamics could occur in a
two-predator system. In some cases, depending on certain
competitive trade-offs, frequency-dependent dynamics oc-
curred, where the first predator species to occupy a habitat
could exclude the other predator species. In other cases
coexistence of the two predator species was predicted. Re-
sources, which may vary in size, were assumed to enter
the habitat at some deterministic rate. Once a prey item
entered the habitat it did not change its size until it was
attacked by a predator. Our work differs from Mittler
(1997) because we assume the state of the resource changes
as it ages.

One important issue in models of coexisting consumers
is how the density of the resource compares with the sit-
uation when only one consumer is present. This question
is of course important in biological control, where the
resource is the item that we wish to regulate. W. W. Mur-
doch (private communication) noted that in the simple
models of coexistence discussed in our introduction, the
addition of a second coexisting consumer (e.g., predator,
herbivore, parasite) to a system never decreases the re-
source level below that which would arise with the most
“effective” consumer present alone. The dynamics of the
current model are consistent with this pattern. When co-
existence occurs the digger is always the most effective
consumer, and in these circumstances the mean equilib-
rium resource density among patches with both diggers
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and consumers present is the same as when only diggers
are present (fig. 2). This minimum density is simply

.∗X = x 1 QD D D

Previous theoretical studies have shown that when mul-
tiple species compete exploitatively for the same limiting
resource, it is the species with the lowest equilibrium re-
source requirement that eventually displaces all other spe-
cies (Armstrong and McGehee 1980; Tilman 1982). An
important result from our model is that one cannot predict
which species will persist by only looking at the equilib-
rium resource level when each species is in isolation. We
have shown that grazers that have a higher equilibrium
than the diggers may still coexist with the diggers (fig. 2B).

In order to allow analytic tractability for much of our
analysis, we have had to make a number of simplifying
assumptions with regards to consumer and resource dy-
namics. An important assumption we have made that
needs further investigation is a lack of resource-dependent
consumer behavior. Consumers are assumed to move ran-
domly through the habitat; they do not make systematic
movements or modify their movements based on recent
resource encounters. When visits to resource patches are
not random the distribution of resources that a forager
encounters is not necessarily the same as the overall dis-
tribution of resources (Possingham 1989; Abrams 1999).
This may affect the region of coexistence. Because we have
assumed random movements, both consumer species will
be scattered within the habitat at any time, but systematic
foraging may partition the distributions of the two species.
Laverty and Plowright (1985) observed that humming-
birds (diggers) and bumblebees (grazers) partition the re-
source distribution in both space and time. Part of the
spatial segregation may be explained by differences in each
species’ ability to access the flowers (the inner flowers of
a patch were protected from hummingbirds by vegetative
cover). Temporal segregation may be due to differences in
the metabolic cost of foraging. Here we have assumed that
consumers are always foraging and renewal is a continuous
process. Despite our simple assumptions on foraging be-
havior, the model does suggest that multiple species that
exhibit little or no apparent systematic foraging may still
coexist even if they consume the same resource.

Another potentially important assumption we have
made is that the habitat is homogeneous. In a real system
we would expect variability among patches with regard to
renewal rates and their carrying capacity (Possingham
1988, 1989). We have also assumed that the population
growth of the consumer is related to the mean intake rate,

but variability in the resources encountered may be par-
ticularly important for risk-sensitive foragers (Bulmer
1994). Consumers may be expected to alter their foraging
behavior depending on whether they are risk averse or risk
prone. This work could be extended and applied to risk-
sensitive foragers by incorporating the variance of the en-
countered resource in the equation that describes con-
sumer growth.

A final assumption that needs further investigation is
that age-0 H-patches renew at the same rate regardless of
whether they were just attacked by a grazer or whether
they were an L-patch that reached the age t. We may expect
for some resource types that renewal may differ depending
on whether it was just attacked by a grazer (e.g., vegetative
regrowth). The rate at which a patch is grazed may be
important for modeling how a resource renews. This is
certainly true for resource depression where the resource
itself may exhibit predator avoiding behavior (e.g., insect
prey). Resource responses could potentially alter the
model’s predictions.

The model presented in this article has shown that two
species, which compete exploitatively, can coexist on a
single resource in a homogeneous environment, given that
they satisfy certain conditions with regard to the level at
which they deplete resources (x) and their associated char-
acter value (Q). However, this model does not tell us
whether another species could invade and exclusively take
over the system and not be invadable by any other po-
tential species. If there exists some trade-off between x and
Q (Schmitt 1996), then future work could use the model
to investigate whether selection would favor some inter-
mediate species or allow coexistence of a suite of species.
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APPENDIX A

Stability Analysis of the Single Consumer–Single Resource Model

Here we present an alternative way to describe resource and consumer dynamics when only one consumer species is
present. Suppose only the grazer species is present. It can be shown that the dynamics of the mean patch density (XH)
and the grazer population size (G) are governed by the following coupled ODEs:

dX j (X (t) 2 x )G(t)H G H G= F (t) 2 ,Hdt 1 1 j h(X (t) 2 x )G H G

dG « j (X (t) 2 x )G G H G= 2 d G(t),G[ ]dt 1 1 j h(X (t) 2 x )G H G

where

`

F (t) = n (a, t)r(x (a, t))da.H E H H
0

This formulation requires that the renewal function r is such that x(a) is not exponential for large a. When resource
renewal is linear, ; when resource renewal obeys the free-space model, . A simple analyticF (t) = r F (t) = r (1 2 X (t)/K)H 0 H 0 H

form for (t) is not possible for logistic-type renewal because the function r(x) is nonlinear. Note that the ageFH

distribution of patches may not need to be explicitly modeled in this system.
Now we examine the stability of this model formulation. The associated Jacobian is

∗ 22j G /(1 1 j hQ ) 1 ­F /­X F 2j Q /(1 1 j hQ )∗G G G H H X G G G GHJ = ,∗ 2[ ]« j G /(1 1 j hQ ) 0G G G G

where and are equilibrium values for the system. There exist two equilibrium points for this model. One is the∗ ∗G XH

trivial solution where there are no consumers at all, , and is the carrying capacity (this is infinite for the∗ ∗G = 0 XH

linear renewal model). There also exists a nontrivial equilibrium point, and∗ ∗ ∗X = Q 1 x G = F (1 1H G G H

. If we let D and T denote the determinant and trace of the Jacobian matrix J, then an equilibriumhj Q )/(j Q )G G G G

point ( ) is locally stable if and ; otherwise, it is unstable (Bulmer 1994). Using these criteria, it can∗ ∗G , X D 1 0 T ! 0H

be easily shown that for both the linear and the free-space renewal models, the trivial equilibrium point is unstable
and the nontrivial point is stable. Hence, the grazer will always become well established when introduced into the
system when it is free of the digger. The same reasoning can be applied to the digger-only situation. Although we
cannot prove analytically that consumers can become well established when resources renew according to the more
general logistic-type model, numerical simulations suggest this is true also (see Nisbet et al. 1998).

APPENDIX B

Resource Dynamics Expressed as Ordinary Differential Equations

When one wishes to generate numerical approximations to partial differential equations (PDEs), it is sometimes easier
to convert them to ODEs and approximate the solutions to the ODEs instead. Here we transform equations (7)–(10),
which describe the dynamics of nL( ), nH( ), xL(a), and xH(a), into equivalent equations that describe the dynamicsa, t a, t
of NL(t) and the products NL(t)XL(t) and NH(t)XH(t). Hence, we show that resource dynamics can be described by
equations that do not explicitly keep track of the age distribution of patches.

First, we integrate equation (7) over the duration it takes an L-patch to become an H-patch,
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t t

­n ­nL L1 da = 2m(t) n (a, t)da,E E L
­t ­a0 0

which reduces to the following:

dNL = 2m(t)N (t) 2 n (t, t) 1 n (0, t). (B1)L L Ldt

The last term is simply m(t) (see eq. [11]). The second to last term represents the fraction of patches that were last
visited by a digger at time . The probability a patch is not visited by a digger from time to time t is givent 2 t t 2 t

by

t

S(t) = exp 2 m(y)dy . (B2)E( )
t2t

Hence,

n (t, t) = S(t)n (0, t 2 t) = S(t)m(t 2 t). (B3)L L

Substituting equations (11) and (B3) into (B1) gives the following delay differential equation (DDE) for NL:

dNL = m(t)(1 2 N (t)) 2 S(t)m(t 2 t). (B4)Ldt

Differentiating equation (5) with respect to t gives

t

d ­nL(N (t)X (t)) = x da,L L E Ldt ­t0

t

­nL= 2 2 m(t)n x da,E L L( )­a0

t t t

­n dx dxL L L= 2 x 1 n da 1 n da 2 m(t) n x da, (B5)E L L E L E L L( )­a da da0 0 0

t t

­
= 2 (n x )da 1 n r(x )da 2 m(t)N (t)X (t),E L L E L L L L

­a0 0

= n (0, t)x (0, t) 2 n (t, t)x (t, t) 1 F (t) 2 m(t)N (t)X (t),L L L L L L L

= m(t)x 2 S(t)m(t 2 t)x 1 F (t) 2 m(t)N (t)X (t),D G L L L

where

t

F (t) = n (a, t)r(x (a))da.L E L L
0

When resource renewal is described by the free-space model (eq. [33]),

F (t) = r (N (t) 2 N (t)X (t)/K).L 0 L L L

Similarly, we can differentiate equation (6) with respect to t, which, after a little algebra, gives
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d
(N (t)X (t)) = [S(t)m(t 2 t) 1 n(t)(1 2 X (t))]x 1 F (t) 2 (m(t) 1 n(t))N (t)X (t), (B6)H H L G H H Hdt

where

`

F (t) = n (a, t)r(x (a))da.H E H H
0

For the case of free-space renewal,

F (t) = r (1 2 N (t) 2 N (t)X (t)/K).H 0 L H H

Differentiating equation (B2) with respect to t gives the final DDE that closes the system:

dS
= [m(t 2 t) 2 m(t)]S(t). (B7)

dt

Consumer-resource dynamics can be generated by numerically approximating solutions to the following sets of coupled
equations: (B4)–(B7), (17), and (18). Subtleties related to initializing DDEs are discussed by Nisbet (1997).
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