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       Grazers and Diggers: Exploitation Competition and

         Coexistence among Foragers with Different

          Feeding Strategies on a Single Resource





Shane A. Richards,1,* Roger M. Nisbet,2 William G. Wilson,1 and Hugh P. Possingham3





1. Department of Zoology, Duke University, Durham, North          was then expanded, and the competitive exclusion prin-

Carolina 27708-0325;                            ciple (Hardin 1960) was proposed, which stated that n

2. Department of Ecology, Evolution and Marine Biology,

                                      species could not coexist on !n resources. In order to apply

University of California, Santa Barbara, California 93106;

                                      this principle, a clear way in which to identify distinct

3. Department of Applied and Molecular Ecology, University of

                                      resources and consumers is required (Haigh and Maynard

Adelaide, Waite Campus, PB 1 Glen Osmond, South Australia

                                      Smith 1972; Schoener 1974; Levins 1979), as well as a clear

5064, Australia

                                      deﬁnition of coexistence (Koch 1974; Hsu et al. 1978;

Submitted January 25, 1999; Accepted August 23, 1999            Armstrong and McGehee 1980; Smith and Waltman 1995).

                                      There have been numerous theoretical studies where mod-

                                      els have apparently violated the competitive exclusion

                                      principle. Competing species can coexist if mechanisms

                                      are present that effectively increase the number of re-

abstract: A mathematical model is presented that describes a sys-

tem where two consumer species compete exploitatively for a single     sources present and/or allow populations to exhibit stable

renewable resource. The resource is distributed in a patchy but homo-   cyclic behavior. Examples include resource partitioning of

geneous environment; that is, all patches are intrinsically identical.

                                      the same prey item (Haigh and Maynard Smith 1972;

The two consumer species are referred to as diggers and grazers,

                                      Schoener 1974), interspeciﬁc variation during the re-

where diggers deplete the resource within a patch to lower densities

                                      source’s life cycle (Briggs 1993; Briggs et al. 1993), life-

than grazers. We show that the two distinct feeding strategies can

                                      history variation among the consumers (McCann 1998),

produce a heterogeneous resource distribution that enables their co-

existence. Coexistence requires that grazers must either move faster    temporal ﬂuctuations in environmental conditions (Koch

than diggers between patches or convert the resources to population    1974; Levins 1979; Turelli 1981; Abrams 1984; Chesson

growth much more efﬁciently than diggers. The model shows that

                                      1990), disturbance (Hastings 1980), interference compe-

the functional form of resource renewal within a patch is also im-

                                      tition (Vance 1985; Fishman 1997), and spatial structuring

portant for coexistence. These results contrast with theory that con-

                                      of the habitat (Tilman 1994).

siders exploitation competition for a single resource when the re-

                                       In this article we investigate whether two species (or

source is assumed to be well mixed throughout the system.

                                      phenotypes) that differ in their strategies for resource ex-

Keywords: exploitation competition, foraging, coexistence, invasion    ploitation can coexist in a system where they both utilize

analysis.

                                      the same resource. We assume the resource is distributed

                                      in a patchy but homogeneous environment; that is, all

                                      patches are intrinsically identical. The two species differ

Understanding the mechanisms that allow species co-

                                      in the degree to which they deplete resources within a

existence remains a key topic in community ecology. The

                                      patch and hence differ in their feeding strategy. The species

mathematical model of Volterra (1926) was the ﬁrst to

                                      that depletes the resource to lower levels is termed the

suggest that the indeﬁnite coexistence of more than one

                                      “digger” species; the other is termed the “grazer” species.

species on the same resource was impossible. This result

                                      An important assumption we make is that the two species

                                      interact only through exploitation competition (Milinski

* Present address: Population Biology Section, University of Amsterdam,

                                      and Parker 1991). There is no direct interference between

Kruislaan 320, 1098 SM Amsterdam, The Netherlands; e-mail: sarichar@

                                      individuals, all interactions occur through each species’

duke.edu.

                                      inﬂuence on a shared food resource. Schmitt (1996) has

Am. Nat. 2000. Vol. 155, pp. 266–279. 2000 by The University of Chicago.

                                      studied an example of such a system, where two species

0003-0147/2000/15502-0009$03.00. All rights reserved.
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of benthic marine snails, Tegula aureotincta and Tegula     the contrasting feeding strategies of the two competing

eiseni, compete for microalgae. Differences in the foraging   species and the dynamics of resource renewal. Coexistence

morphologies of the two snails have been shown to have     can occur because each consumer does not encounter a

different effects on the distribution of the algal resource.  ﬁxed amount of resource when it visits a patch but an

Tegula eiseni was found to be capable of reducing algal     amount that depends on the time since the last consumer’s

densities to lower levels than T. aureotincta. Nectarivores   visit and its type. Hence, consumers encounter resource

are another example of a group of consumers that often     levels described by a probability density function, which

appear to interact through exploitation competition. Lav-    effectively increases the number of resource types. The

erty and Plowright (1985) studied a system where two      digger species can often persist because it can exploit re-

species of bumblebee and a hummingbird compete for       sources that the grazer species cannot reach. The grazer

nectar in jewelweed. In this example the consumer species    species can also persist if it moves faster among patches

were found to differ in the depth to which they could      than the digger species and encounters patches that have

drain the nectar spur and also the rate at which they visited  not been recently visited by diggers. In doing so the grazer

ﬂowers (Laverty and Plowright 1985).              species can often reduce the mean resource abundance

  Possingham (1987) constructed a mathematical model      within the system so that it stops the diggers from taking

of nectarivore competition (which was assumed to be ex-     over. We also ﬁnd that the dynamics of resource renewal

ploitative) and showed that two consumer species, which     play an important role in determining the outcome of

differed in their ability to deplete nectar from a ﬂower,    exploitation competition.

could coexist on a single ﬂower species. Coexistence was

dependent on the competitive ability of both species,

                                            The Model

which was deﬁned as the mean net energy gained per

calorie extracted from a ﬂower, divided by the cost of using  We consider a habitat that contains a large number of

each ﬂower. Wilson et al. (1999) ﬁtted a similar mathe-     identical small patches each containing a resource of den-

matical model, which described the dynamics of two ben-     sity x. There are two species of consumers, which we refer

thic grazers competing for algae, to data collected by     to as diggers and grazers. Grazers (G) can only consume

Schmitt (1996). Although the model required a number      resources on a patch whose density exceeds xG, and when

of parameters, the data were sufﬁcient to give estimates    a grazer visits such a patch, its density drops to xG. Diggers

to all parameters but one. The best ﬁt was found to lie     (D) consume resources in a similar manner, reducing the

very close to a region of coexistence. Given the uncertainty  resources in a patch to level xD. They may eat resources

in the ﬁtted parameters, the model predictions were not     on patches that have a lower density than that accessible

inconsistent with observed coexistence in the ﬁeld       to the grazers so that x D ! x G. We assume that patch size

(Schmitt 1996). In this article we have reviewed, gener-    is sufﬁciently small so the timescale at which patches are

alized, and extended the work of Possingham (1987) and     depleted of resources is fast compared with the timescale

Wilson et al. (1999) by investigating how the model of     of resource renewal (Possingham 1988). A patch can be

resource renewal affects coexistence.              in one of two states, depending on the amount of resource

  We present a mathematical model that describes the      it contains. The state of a patch is dependent on the time

dynamics of the two consumer species and the shared       since it was last visited by a consumer and the species of

resource. The habitat is assumed to be made up of a large    the last visitor. Patches that have a resource density 1xD

number of identical patches, each containing a renewing     and ! xG are referred to as low-density patches (L-patches),

resource. Each patch is sufﬁciently small so that its re-    and patches that have a resource density 1xG are referred

source drops rapidly whenever a consumer visits and then    to as high-density patches (H-patches). Consumers are

recovers relatively slowly between visits. Both consumer    assumed to move randomly among patches. The resource

species visit patches in a random manner. This form of     in a patch renews according to the following equation:

consumer-resource interaction has been shown in previous

                                             dx

work to have a stabilizing effect on consumer-resource

                                              = r(x).            (1)

dynamics (Nisbet et al. 1997, 1998). We use invasibility                 dt

analyses to identify the outcome of exploitation compe-

tition. In most cases one of the two species is predicted    Hence, renewal is a continuous process that depends on

to displace the other; however, coexistence can occur over   the current resource density within the patch. Renewal may

a relatively small range of parameter values. It is important  be due to local processes (e.g., regrowth or resource pro-

to note that coexistence in our model does not occur      duction) or resource immigration from sources that are

because of any intrinsic patch heterogeneity. Differences    external to the habitat.

in the resource abundance among patches are created by      As well as their state, patches are also characterized by

268 The American Naturalist



their age, a. The age of an L-patch is the time that has              nL   nL

                                               =    m(t)n L ,              (7)

elapsed since the patch was last visited by a digger. The              t   a

age of an H-patch is the time since its density was xG. This

                                         nH    nH

density occurs either when the patch is visited by a grazer                  =    (m(t)    n(t))n H ,        (8)

                                          t    a

or when the density on an L-patch renews and reaches xG.

Denote by t the time it takes for the resource on an L-                  dx L

                                                = r(x L ),                 (9)

patch to renew from xD to xG. This time interval is obtained                dt

by solving

                                             dx H

                                               = r(x H),                  (10)

                                             dt

          t



            r(x(a))da = x G     x D.     where m(t) and n(t) are the rates that all patches are visited

                             (2)

                                by the digger and grazer populations at time t, respectively.

          0



                                These four equations are associated with the following

                                boundary conditions:

Note that x(0) = x D, x(t) = x G, and all L-patches have an

                                         n L(0, t) = m(t),                    (11)

age !t.

  In order to describe resource and consumer dynamics,

                                         n H(0, t) = n L(t, t)    n(t)NH(t),         (12)

we keep track of the age distribution of patches. The frac-

tion of the L-patches at time t that are aged between a               x L(0) = x D ,                    (13)

and a da, is nL(a, t) da. Similar notation is used to rep-

                                          x H(0) = x G.                     (14)

resent the age distribution of the H-patches. The fraction

of all patches that are L-patches and the fraction of all

                                Equation (11) expresses the fact that the rate of creation

patches that are H-patches at time t are denoted NL(t) and

                                of age-0 L-patches at any time is equal to the rate that all

NH(t), respectively. These fractions can be calculated using

                                patches are visited by diggers. Equation (12) arises because

                                the rate of creation of age-0 H-patches is equal to the rate

                                that L-patches change their state (which occurs when they

                  t

                                have survived to age t) plus the rate that grazers visit H-

          NL(t) =       n L(a, t)da,   (3)

                                patches.

                  0

                                 The variables D(t) and G(t) represent the density of

                                diggers and grazers, respectively. Because all individuals in

         NH(t) =       n H(a, t)da.   (4)  the system move randomly from patch to patch and move-

                  0

                                ments are independent of the presence of other individ-

                                uals, patches are visited by the consumers at a rate that is

                                proportional to the number of consumers. When individ-

Note that NL(t) NH(t) = 1 for all time t.

                                ual diggers and grazers are searching for patches, they

  The resource density within L-patches and H-patches,

                                encounter them at rates jD and jG, respectively. Both spe-

which are of age a, are denoted xL(a) and xH(a), respec-

                                cies exhibit a Holling Type II functional response when

tively. The average resource density within L-patches and

                                seeking and handling the resource. The parameter h is the

H-patches at time t can be calculated from the following

                                average time a consumer takes to handle a unit of resource,

equations:

                                which we assume is the same for both consumer species.

                                If the number of patches is large compared to the number

                                of consumers, then the patch-encounter rates exerted by

             t



                                the digger and grazer populations can be approximated

       XL(t) =     n L(a, t)x L(a)da/NL(t),  (5)

                                by the following (Nisbet et al. 1997, 1998):

             0







                                                jD D(t)

       XH(t) =     n H(a, t)x H(a)da/NH(t).  (6)     m(t) =                              ,  (15)

                                       1   jD h[NL(t)XL(t) NH(t)XH(t)         x D]

             0





                                            jGG(t)

                                   n(t) =                     .          (16)

Resource dynamics are governed by the following equa-             1   jGhNH(t)[XH(t)      x G]

tions:

                                               Coexistence of Feeding Strategies 269



Note that in this model grazers may visit patches that     the distribution of patch ages is described by an expo-

contain a resource density too low for them to consume.     nential density function (Nisbet et al. 1997). The associated

  We assume constant conversion efﬁciencies of resource    steady state distributions for nL(a, t) and nH(a, t) are de-

to consumer numbers, D and G. Both species have con-      ﬁned and given by

stant per capita death rates, dD and dG. Consumer dynamics

                                                             0 ≤ a ≤ t,

                                     n ∗(a) = m∗ exp ( m∗a)

come from the two ordinary differential equations (ODEs),                                       (19)

                                      L





                                                             a ≥ 0,

                                    n H(a) = m∗ exp [ m∗(a

                                     ∗

                                                                   (20)

                                                      t)]

       [                  ]

    dD      jD(NLXL NHXH x D)

         D

     =                   dD D,  (17)

    dt  1    jD h(NLXL NHXH x D)            where m∗ is the equilibrium patch visitation rate of the

                                digger population. Later we will show how this rate can



       [              ]

    dG     j NH(XH x G)                 be calculated.

         GG

     =              dG G.       (18)

    dt  1   jGhNH(XH x G)                  The average resource density in patches at steady state,

                                           ∗

                                which we denote XD , can be calculated from the above

Note that we have assumed there is no direct intraspeciﬁc    steady state distributions:

or interspeciﬁc competition for the resource in these equa-

tions. Consumer growth rates are only directly regulated                t

                                     ∗

                                              n ∗(a)x L(a)da     n ∗ (a)x H(a)da,

by the distribution of the resource, which is regulated by        XD =                             (21)

                                               L           H

the two populations.                                0             0









                                              m∗ exp ( m∗a)x(a)da.

                                      =                             (22)

           Invasion Analysis                      0







                                We also know from equation (17) that at steady state,

In this section we examine under what conditions, if any,

the two consumer species can coexist. To do this we use

                                          NL∗XL

                                            ∗      ∗∗

the technique termed “invasion analysis” (MacArthur and                      NHXH = Q D      xD,     (23)

Levins 1967; Turelli 1981). We ﬁrst let one species establish

itself within the environment and come to equilibrium.     where Q D = dD /[jD( D hdD)] and the star notation in-

We next examine whether the population size of the second    dicates steady state values. The left-hand side of equation

species will increase when it is placed within the environ-   (23) is simply the average resource density among all

                                      ∗

ment at low densities (i.e., we see whether it can invade).   patches, XD . This density must be 1xD, which means QD

We then repeat this with the role of both species reversed.   must be positive or equivalently D 1 hdD. If this condition

Coexistence occurs when both species can invade each      is not true, the digger population cannot persist. When

other when the resident is well established.          we combine equation (22) with equation (23) we get an

                                implicit formula for calculating m∗, namely,

  To show coexistence is possible, we need to show that

both species can become well established in the absence

of the other (Turelli 1981). To show this is indeed true for

                                          m∗ exp ( m∗a)x(a)da = Q D

the model presented here, we rewrite the model in terms                                    xD.  (24)

of coupled time-dependent ODEs and use this formulation            0



to show that there exists a unique globally stable nontrivial

                                Equation (23) tells us that the average density of resource

equilibrium population size and resource distribution (see

                                among all patches, when only diggers are in the system,

app. A). Stability of the equilibrium with only one con-

                                is independent of the assumptions on resource renewal.

sumer present is assumed in the analysis to follow.

                                However, the fraction of patches that are L-patches and

                                the fraction that are H-patches, at equilibrium, is depen-

         Grazers Invading Diggers            dent on the assumption about resource renewal. This de-

                                pendence can be seen by noting that the patch-visiting rate

First, we assume that only diggers are present and the

                                of the diggers, m∗, is dependent on x(a) in equation (24).

system is at equilibrium. We can calculate resource den-

                                  Grazers can invade if, in equation (18), dG/dt 1 0, when

sities within patches using x L(a) = x(a) and x H(a) =

                                the resource is in the steady state distribution associated

x(a t), where x(a) is the solution to dx/da = r(x) subject

                                with the digger-only state. This is true when

to x(0) = x D. Because movement among patches is ran-

dom, all patches, irrespective of their age or state, expe-

                                                  ∗  ∗

rience the same risk of a visit from a digger. As a result,                 Q G ! NH (XH    x G),        (25)
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where Q G = dG /[jG( G hdG)]. We can expand the previous                  x(a) = x D   r0 a.        (31)

equation to give the following condition for invasion:

                                   The time for the resource on a patch to renew from level

                                   xD to level xG is t = (x G x D)/r0. Substituting the above

            m∗ exp ( m∗a)(x(a)

      QG !                   x G)da.  (26)

                                   renewal function into equation (24) gives m∗ = r0 /Q D.

          t

                                   When this rate is then substituted into equation (26), we

                                   get the following condition for grazers to invade diggers,

In order to determine whether the grazer species can in-

vade the digger species when resources renew according

to some function r, we ﬁrst evaluate the steady state patch-            Q G ! Q D exp [ (x G   x D)/Q D].    (32)

visitation rate of the digger population, m∗, using equation

(24). Next, we use this visitation rate in equation (26) and     Note that this condition is independent of the renewal

see whether the invasion condition is satisﬁed.           rate, r0. The condition for diggers to invade grazers is given

                                   by equation (29). It can be easily shown that for all

                                   x G 1 x D, there exist pairs (Q D , Q G) that satisfy both in-

         Diggers Invading Grazers

                                   vasion conditions. Hence, if resource renewal is linear and

When only grazers are present and the population has         unbounded, then diggers and grazers may coexist. An ex-

reached steady state, all patches have a resource density      ample of this model is presented in ﬁgure 1A, which shows

of at least xG, so NL∗ = 0 and NH = 1. From equation (18),

                ∗

                                   when coexistence occurs and when either the digger or

          ∗  ∗

we know that NH (XH x G) = Q G; hence,                the grazer excludes the other. We have conﬁrmed the lo-

                                   cations of the boundaries in ﬁgure 1A using an explicit

             ∗

             XH = Q G    xG          (27)  numerical solution to the dynamic equations.

is the average resource density among patches. Diggers can

invade the system if

                                             Free-Space Renewal

        Q D ! NL∗XL

             ∗    ∗∗

                 NHXH      xD.      (28)

                                   An alternative formulation for the rate of renewal is

Substituting equation (27) into equation (28) gives the

following invasion condition:

                                                  ()   x

                                              r(x) = r0 1    .        (33)

                                                      K

            QD ! QG   xG    xD,       (29)



                                   This can describe a number of situations where, in the

which is independent of the assumption on resource re-

                                   absence of consumers, the resource density approaches

newal. The important feature for invasion is the difference

                                   some density, K. One example of such a situation is

in the depletion levels of the two competitors.

                                   when resources renew at a constant rate, as in the pre-

                                   vious model, but now resources become nonviable at

              Results

                                   some constant rate. An example of this process is aerial

                                   insects that have fallen onto water being washed up

In this section we investigate three models that describe

                                   along a riverbank at a constant rate and then washed

resource renewal. For each of these models, we determine

                                   away at some constant per capita rate (Davies and

whether coexistence of the grazer and digger species is

                                   Houston 1981). Alternatively, this model can be used

possible using the invasion conditions derived in the pre-

                                   to describe the process where resource particles enter a

vious section.

                                   patch at a ﬁxed rate but only establish within the patch

                                   if they happen to land on a section of the patch that is

             Linear Renewal

                                   not currently occupied by another resource particle.

                                   This process is often referred to as free-space recruit-

The simplest assumption about resource renewal is that it

                                   ment and has been applied to models that describe pop-

occurs at some constant rate, r0, and resources remain

                                   ulation dynamics of benthic marine invertebrates (e.g.,

viable until they are consumed. The renewal function is

                                   Roughgarden 1997 and references within). In this case

            r(x) = r0 .         (30)      the parameter K is often referred to as the patch-car-

                                   rying capacity.

Suppose there are only diggers present, then the resource

                                    This renewal model gives the following:

density on a patch of age a is

                                                Coexistence of Feeding Strategies 271





                                      Again, note that this condition is independent of the pa-

                                      rameter r0. The rate at which the resource approaches the

                                      carrying capacity has no inﬂuence on whether the digger

                                      population will be invaded; however, the success of in-

                                      vasion is inﬂuenced by the carrying capacity. The presence

                                      of a carrying capacity means we have extra conditions

                                      about when the grazers and diggers can persist in the

                                      system. From equation (17) it can be shown that the

                                      growth rate of the digger population is never positive and,

                                      hence, cannot persist if Q D 1 K x D. Similarly, the grazer

                                      population cannot persist if Q G 1 K x G. Thus, for any

                                      given K, there now exists a region in the (Q D , Q G) plane

                                      where neither the digger nor the grazer can persist. As

                                      with the previous model on resource renewal, it can be

                                      shown that for this model, pairs (Q D , Q G) exist that satisfy

                                      both invasion conditions; therefore, coexistence is possible.

                                      An example of the coexistence region for this model is

                                      presented in ﬁgure 1B.

                                       Three examples of consumer-resource dynamics are

                                      presented in ﬁgure 2. The grazer species is characterized

                                      by the same parameter values in each example (table 1)

                                      and is associated with a Q value of Q G = 0.15. Grazers

                                      encounter patches twice as fast as diggers, and both diggers

                                      and grazers live, on average, one time unit (table 1). The

                                      three examples differ in the Q value associated with the

                                      diggers: (A) Q D = 0.4, (B) Q D = 0.5, and (C) Q D = 0.6. In

                                      all three examples, the grazer species is assumed to be well

                                      established before an inoculum of diggers is introduced.

                                      The dynamics are qualitatively different in each of the three

                                      examples, and they match the predictions (ﬁg. 1B). The

                                      steady state resource density when only grazers are present

                                        ∗

                                      is X G = 0.65 resource units. The steady state resource den-

                                      sities for the three examples, when only diggers are present,

                                            ∗      ∗          ∗

                                      are (A) XD = 0.5, (B) XD = 0.6, and (C) XD = 0.7 resource

                                                ∗  ∗

                                      units. Although X G 1 XD in ﬁgure 2B, the grazers clearly

Figure 1: Coexistence regions when resource renewal is (A) linear and

                                      coexist with the diggers. The dynamics presented in ﬁgure

(B) free space (carrying capacity, K = 1 ). In both examples, the digger

                                      2 were generated by numerically solving a set of six coupled

and grazer resource thresholds are given by xD = 0.1 and xG = 0.5.

                                      delay differential equations (app. B).



       x(a) = K    (K  x D) exp ( r0 a/K ),      (34)

                                               Logistic-Type Renewal





              ()                       A more general model that can be used to describe resource

            KK     xD

                                      renewal is

         t=   ln     ,              (35)

            r0  K   xG

                                                          j

          r0

                                                        ()x

         ∗

        m=   (K     xD   Q D).         (36)                   i

                                                r(x) = r0 x 1   ,         (38)

          QD K                                             K

The condition for grazers to invade diggers can be shown          where i and j are nonnegative constants. The linear renewal

to be                                   model is recovered when i = j = 0, and the free-space

                                      model is recovered when i = 0 and j = 1. When i = j = 1,

                     (K xD)/QD





               ()

              K     xD                  resource renewal is logistic, which is a commonly adopted

          QG ! QD             .       (37)

              K     xG                  model to describe the growth of a wide range of prey
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                                      so must be evaluated numerically. Figure 3 shows four

                                      examples of the renewal function, equation (38), and

                                      the form of the age-dependent change in resource den-

                                      sity that results. In ﬁgure 4 we present the coexistence

                                      regions associated with the renewal functions presented

                                      in ﬁgure 3. Coexistence is possible for all resource-re-

                                      newal functions presented, and the region of coexistence

                                      varies depending on the assumption of resource re-

                                      newal. The region is smallest when renewal is described

                                      by the free-space model and is largest when renewal is

                                      described by the third model. Numerical results again

                                      show that the condition for grazers to invade diggers

                                      is independent of the renewal parameter, r0.





                                                  Discussion

                                      In this article we have shown that in some situations it is

                                      possible that species that compete exploitatively for a com-

                                      mon resource may coexist. This result is in contrast to

                                      previous studies of exploitation competition that assume

                                      the resource is well mixed within the habitat (e.g., Fishman

                                      1997). The fact that we found the possibility of coexistence

                                      in our model is not all that surprising. Our model is a

                                      subtle example of resource partitioning, which, as was

                                      noted in our introduction, has been shown to promote

                                      coexistence. The two consumers are essentially competing

                                      within a system that contains two types of resources,

                                      namely L-patches and H-patches. An important result

                                      from our model is that spatial and temporal changes in

                                      the resource distribution and, hence, the two types of patch

                                      are created by the foraging behaviors of the consumers

                                      and not from any intrinsic differences among resource

                                      patches. Although the abundance of L-patches and H-

                                      patches are correlated at any time, knowledge of the abun-

Figure 2: Consumer-resource dynamics for the three cases presented in

                                      dance of one does not necessarily specify the abundance

ﬁgure 1B (solid circles). In all examples K = 1, xD = 0.1, xG = 0.5, and

QG = 0.15. The Q-values associated with the digger species are (A)     of the other; hence, coexistence may occur in this system

QD = 0.4, (B) QD = 0.5, and (C) QD = 0.6. Each example shows the mean

                                      (Haigh and Maynard Smith 1972).

resource level, NLXL NHXH (dotted line); digger density, D (solid thick

                                       The situation presented here corresponds to the idea of

line); and grazer density, G (solid thin line).

                                      an included niche (Miller 1964, 1967), where in this case

organisms. There are two important properties of this

                                        Table 1: Parameter values used in all the simulations

model. When j 1 0 the resource density within a patch will

                                        presented

tend toward a carrying capacity K, and when i 1 0 the

                                        Parameter       Description       Value

resource does not renew after it has been completely de-

pleted from a patch. From the previous model, we have              K      Patch carrying capacity      1

seen that the presence of a carrying capacity means that            r0      Maximum renewal rate       20

species characterized by high Q values cannot persist in            h      Resource handling time       .01

the system regardless of the presence or absence of other            xD      Digger resource threshold      .1

                                        xG      Grazer resource threshold      .5

species. The second property is particularly important if

                                               Digger mortality rate       1

                                        dD

consumers deplete all resources from a patch because even-

                                               Grazer mortality rate       1

                                        dG

tually they will drive themselves to extinction.

                                               Digger patch encounter rate   100

                                        jD

  An analytic solution to the invasion condition, equa-

                                               Grazer patch encounter rate   200

                                        jG

tion (26), is generally not possible for this model and
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Figure 3: Examples of the logistic-type resource-renewal model as described by equation (38). Also shown are the associated renewal trajectories,

x(a). Parameter values for each example are as follows: (A) i = 0 , j = 1 ; (B) i = 1 , j = 1 ; (C) i = 2 , j = 1; and (D) i = 1, j = 2. In all examples, the

digger and grazer resource thresholds are given by xD = 0.1 ( ﬁlled dots) and xG = 0.5 (open dots), and the carrying capacity K = 1.







the niche of the grazer (i.e., the densities of resource that          within its restricted niche). We have shown that if the

can be accessed) is a subset of the niche of the digger.            consumer with the restricted niche is sufﬁciently efﬁcient,

Coexistence may be possible, provided the grazer species            then it can exclude the consumer that has the greater niche.

is more efﬁcient than the digger species at utilizing high-            The parameter r0 that appears in all three renewal mod-

density resource patches (i.e., it is a better competitor            els considered in this article has no inﬂuence on the region
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                                       then their persistence depends on the presence of high-

                                       density patches, which may become sufﬁciently rare in the

                                       presence of grazers such that diggers are driven to

                                       extinction.

                                         A similar mechanism that shares many features with

                                       ours was studied by Briggs (1993) in the context of insect

                                       parasitoids. In her system two parasitoid species attack

                                       different developmental stages of a single host species.

                                       Briggs (1993) presents an age-structured model of the sys-

                                       tem and shows that the two parasitoids could coexist if

                                       the parasitoid that utilizes the later host stage could suc-

                                       cessfully attack hosts that had been attacked earlier by the

                                       other parasitoid. Like the results presented here, it was

                                       found that the outcome of competition was dependent on

                                       the consumer efﬁciency of both parasitoid species, which

                                       was deﬁned in a similar manner as the Q value of the

                                       diggers and grazers in this article.

                                         In this article we have shown that the consumer’s effect

                                       on the distribution of resources, and not necessarily the

                                       mean abundance of resources, is important for coexis-

                                       tence. This result was also shown by Mittler (1997), who

Figure 4: Coexistence regions when resource renewal is described by the

                                       investigated a model of predator-prey dynamics that over-

logistic-type functional form. The Digger only and Digger and Grazer

                                       laps to some extent with the model presented in this article.

boundary correspond to the four cases presented in ﬁgure 3: (A) solid

thick line, (B) long-dashed line, (C) short-dashed line, and (D) solid thin  Predators did not necessarily consume prey in their en-

line.

                                       tirety, leaving smaller prey items that may be more efﬁ-

                                       ciently consumed by other predators. Mittler (1997)

of coexistence. The effect of r0 is to alter the timescale of         showed that a rich range of dynamics could occur in a

resource renewal, which affects population sizes but not           two-predator system. In some cases, depending on certain

the essential qualities of the dynamics that inﬂuence co-           competitive trade-offs, frequency-dependent dynamics oc-

existence. Thus, the rate at which a resource renews has           curred, where the ﬁrst predator species to occupy a habitat

no bearing on which species are expected to persist in a           could exclude the other predator species. In other cases

habitat. What is important for determining species com-            coexistence of the two predator species was predicted. Re-

position is the manner in which the resource renews within          sources, which may vary in size, were assumed to enter

patches. The functional form of resource renewal deﬁnes            the habitat at some deterministic rate. Once a prey item

the conditions under which the grazer is able to persist in          entered the habitat it did not change its size until it was

a habitat that is occupied by diggers. The region of co-           attacked by a predator. Our work differs from Mittler

existence is increased when the relative rate of renewal in          (1997) because we assume the state of the resource changes

the H-patches compared to the L-patches is increased.             as it ages.

When a free-space renewal function is assumed, the re-              One important issue in models of coexisting consumers

source increases much faster in the L-patches compared            is how the density of the resource compares with the sit-

to the H-patches, and in this case the region of coexistence         uation when only one consumer is present. This question

is small. However, if the rate of renewal is high in H-            is of course important in biological control, where the

patches (e.g., ﬁg. 3C), then the region of coexistence is           resource is the item that we wish to regulate. W. W. Mur-

signiﬁcantly increased (ﬁg. 4). Although in this case it may         doch (private communication) noted that in the simple

take some time for patches to become accessible to grazers          models of coexistence discussed in our introduction, the

after they have been visited by a digger, if diggers move           addition of a second coexisting consumer (e.g., predator,

slowly or have a low population size, then grazers can            herbivore, parasite) to a system never decreases the re-

persist if they are sufﬁciently efﬁcient (i.e., they make bet-        source level below that which would arise with the most

ter use of the high resource-renewal rates of the H-             “effective” consumer present alone. The dynamics of the

patches). By either moving quickly through the habitat or           current model are consistent with this pattern. When co-

having high population growth rates, the grazers persist           existence occurs the digger is always the most effective

even though they may encounter patches that they cannot            consumer, and in these circumstances the mean equilib-

utilize. However, if diggers are not efﬁcient consumers,           rium resource density among patches with both diggers
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and consumers present is the same as when only diggers     but variability in the resources encountered may be par-

are present (ﬁg. 2). This minimum density is simply       ticularly important for risk-sensitive foragers (Bulmer

 ∗

XD = x D Q D.                          1994). Consumers may be expected to alter their foraging

  Previous theoretical studies have shown that when mul-    behavior depending on whether they are risk averse or risk

tiple species compete exploitatively for the same limiting   prone. This work could be extended and applied to risk-

resource, it is the species with the lowest equilibrium re-   sensitive foragers by incorporating the variance of the en-

source requirement that eventually displaces all other spe-   countered resource in the equation that describes con-

cies (Armstrong and McGehee 1980; Tilman 1982). An       sumer growth.

important result from our model is that one cannot predict     A ﬁnal assumption that needs further investigation is

which species will persist by only looking at the equilib-   that age-0 H-patches renew at the same rate regardless of

rium resource level when each species is in isolation. We    whether they were just attacked by a grazer or whether

have shown that grazers that have a higher equilibrium     they were an L-patch that reached the age t. We may expect

than the diggers may still coexist with the diggers (ﬁg. 2B).  for some resource types that renewal may differ depending

  In order to allow analytic tractability for much of our   on whether it was just attacked by a grazer (e.g., vegetative

analysis, we have had to make a number of simplifying      regrowth). The rate at which a patch is grazed may be

assumptions with regards to consumer and resource dy-      important for modeling how a resource renews. This is

namics. An important assumption we have made that        certainly true for resource depression where the resource

needs further investigation is a lack of resource-dependent   itself may exhibit predator avoiding behavior (e.g., insect

consumer behavior. Consumers are assumed to move ran-      prey). Resource responses could potentially alter the

domly through the habitat; they do not make systematic     model’s predictions.

movements or modify their movements based on recent        The model presented in this article has shown that two

resource encounters. When visits to resource patches are    species, which compete exploitatively, can coexist on a

not random the distribution of resources that a forager     single resource in a homogeneous environment, given that

encounters is not necessarily the same as the overall dis-   they satisfy certain conditions with regard to the level at

tribution of resources (Possingham 1989; Abrams 1999).     which they deplete resources (x) and their associated char-

This may affect the region of coexistence. Because we have   acter value (Q). However, this model does not tell us

assumed random movements, both consumer species will      whether another species could invade and exclusively take

be scattered within the habitat at any time, but systematic   over the system and not be invadable by any other po-

foraging may partition the distributions of the two species.  tential species. If there exists some trade-off between x and

Laverty and Plowright (1985) observed that humming-       Q (Schmitt 1996), then future work could use the model

birds (diggers) and bumblebees (grazers) partition the re-   to investigate whether selection would favor some inter-

source distribution in both space and time. Part of the     mediate species or allow coexistence of a suite of species.

spatial segregation may be explained by differences in each

species’ ability to access the ﬂowers (the inner ﬂowers of

a patch were protected from hummingbirds by vegetative               Acknowledgments

cover). Temporal segregation may be due to differences in

the metabolic cost of foraging. Here we have assumed that    We thank C. J. Briggs, J. S. Brown, M. A. Gilchrist, W. W.

consumers are always foraging and renewal is a continuous    Murdoch, K. J. O’Keefe, C. W. Osenberg, R. J. Schmitt,

process. Despite our simple assumptions on foraging be-     L. Stone, and two anonymous referees for their helpful

havior, the model does suggest that multiple species that    comments. The research was supported in part by the

exhibit little or no apparent systematic foraging may still   Ofﬁce of Naval Research (grant N00012-93-10952), the

coexist even if they consume the same resource.         National Science Foundation (grants DEB-93-19301 and
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                             APPENDIX A



             Stability Analysis of the Single Consumer–Single Resource Model



Here we present an alternative way to describe resource and consumer dynamics when only one consumer species is

present. Suppose only the grazer species is present. It can be shown that the dynamics of the mean patch density (XH)

and the grazer population size (G) are governed by the following coupled ODEs:



                      dXH         jG(XH(t) x G)G(t)

                        = FH(t)              ,

                      dt         1 jGh(XH(t) x G)





                          [                 ]

                      dG      j (XH(t) x G)

                             GG

                        =                 dG G(t),

                      dt  1    jGh(XH(t) x G)



where





                        FH(t) =    n H(a, t)r(x H(a, t))da.

                              0







This formulation requires that the renewal function r is such that x(a) is not exponential for large a. When resource

renewal is linear, FH(t) = r0; when resource renewal obeys the free-space model, FH(t) = r0(1 XH(t)/K ) . A simple analytic

form for FH(t) is not possible for logistic-type renewal because the function r(x) is nonlinear. Note that the age

distribution of patches may not need to be explicitly modeled in this system.

  Now we examine the stability of this model formulation. The associated Jacobian is









                 [                                 ]

                   jGG ∗/(1  jGhQ G)2 FH / XHFX∗       jGQ G /(1 jGhQ G)

              J=                                   ,

                                  H



                       jGG ∗/(1 jGhQ G)2               0

                      G







where G ∗ and XH are equilibrium values for the system. There exist two equilibrium points for this model. One is the

          ∗



trivial solution where there are no consumers at all, G ∗ = 0 , and XH is the carrying capacity (this is inﬁnite for the

                                     ∗



linear renewal model). There also exists a nontrivial equilibrium point, XH = Q G x G and G ∗ = FH (1

                                             ∗              ∗



hjGQ G)/(jGQ G). If we let D and T denote the determinant and trace of the Jacobian matrix J, then an equilibrium

point (G ∗, XH ) is locally stable if D 1 0 and T ! 0; otherwise, it is unstable (Bulmer 1994). Using these criteria, it can

       ∗



be easily shown that for both the linear and the free-space renewal models, the trivial equilibrium point is unstable

and the nontrivial point is stable. Hence, the grazer will always become well established when introduced into the

system when it is free of the digger. The same reasoning can be applied to the digger-only situation. Although we

cannot prove analytically that consumers can become well established when resources renew according to the more

general logistic-type model, numerical simulations suggest this is true also (see Nisbet et al. 1998).



                             APPENDIX B



             Resource Dynamics Expressed as Ordinary Differential Equations



When one wishes to generate numerical approximations to partial differential equations (PDEs), it is sometimes easier

to convert them to ODEs and approximate the solutions to the ODEs instead. Here we transform equations (7)–(10),

which describe the dynamics of nL(a, t ), nH( a, t ), xL(a), and xH(a), into equivalent equations that describe the dynamics

of NL(t) and the products NL(t)XL(t) and NH(t)XH(t). Hence, we show that resource dynamics can be described by

equations that do not explicitly keep track of the age distribution of patches.

  First, we integrate equation (7) over the duration it takes an L-patch to become an H-patch,
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                           t                         t

                                nL    nL

                                      da =               n L(a, t)da,

                                               m(t)

                                 t    a

                          0                         0





which reduces to the following:



                      dNL

                        =           m(t)NL(t)       n L(t, t)     n L(0, t).                    (B1)

                       dt



The last term is simply m(t) (see eq. [11]). The second to last term represents the fraction of patches that were last

visited by a digger at time t t . The probability a patch is not visited by a digger from time t t to time t is given

by







                                           (             )

                                                t



                                  S(t) = exp           m(y)dy .                           (B2)

                                                tt







Hence,



                      n L(t, t) = S(t)n L(0, t              t) = S(t)m(t                           (B3)

                                                             t).



Substituting equations (11) and (B3) into (B1) gives the following delay differential equation (DDE) for NL:



                        dNL

                          = m(t)(1             NL(t))     S(t)m(t                           (B4)

                                                            t).

                         dt



Differentiating equation (5) with respect to t gives

                        t

            d                nL

              (NL(t)XL(t)) =          x Lda,

            dt                t

                       0





                      t





                         (                  )

                                nL

                   =                 m(t)n L x Lda,

                                a

                      0





                            t                         t              t





                              (               )

                                 nL         dx L              dx L

                   =               xL    nL     da          nL    da         n Lx Lda,      (B5)

                                                                 m(t)

                                 a         da               da

                           0                          0               0



                            t                 t



                   =               (n Lx L )da        n Lr(x L )da      m(t)NL(t)XL(t),

                                a

                           0                  0





                   = n L(0, t)x L(0, t)             n L(t, t)x L(t, t)      FL(t)    m(t)NL(t)XL(t),



                   = m(t)x D           S(t)m(t            FL(t)      m(t)NL(t)XL(t),

                                           t)x G



where

                                        t



                                FL(t) =      n L(a, t)r(x L(a))da.

                                        0







When resource renewal is described by the free-space model (eq. [33]),



                              FL(t) = r0(NL(t)         NL(t)XL(t)/K ).



Similarly, we can differentiate equation (6) with respect to t, which, after a little algebra, gives
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          d

           (N (t)XH(t)) = [S(t)m(t           XL(t))]x G   FH(t)   (m(t)  n(t))NH(t)XH(t),      (B6)

                        t)  n(t)(1

          dt H



where





                        FH(t) =    n H(a, t)r(x H(a))da.

                             0







For the case of free-space renewal,



                      FH(t) = r0(1    NL(t)   NH(t)XH(t)/K ).



Differentiating equation (B2) with respect to t gives the ﬁnal DDE that closes the system:



                         dS

                          = [m(t                                  (B7)

                                 t)   m(t)]S(t).

                         dt



Consumer-resource dynamics can be generated by numerically approximating solutions to the following sets of coupled

equations: (B4)–(B7), (17), and (18). Subtleties related to initializing DDEs are discussed by Nisbet (1997).
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