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Summary

1.

 

Functional response models (e.g. Holling’s disc equation) that do not take the spatial
distributions of prey and predators into account are likely to produce biased estimates
of predation rates.

 

2.

 

To investigate the consequences of ignoring prey distribution and predator aggre-
gation, a general analytical model of a predator population occupying a patchy envi-
ronment with a single species of prey is developed.

 

3.

 

The model includes the density and the spatial distribution of the prey population,
the aggregative response of the predators and their mutual interference.

 

4.

 

The model provides explicit solutions to a number of scenarios that can be inde-
pendently combined: the prey has an even, random or clumped distribution, and the
predators show a convex, sigmoid, linear or no aggregative response.

 

5.

 

The model is parameterized with data from an acarine predator–prey system consist-
ing of 

 

Phytoseiulus persimis

 

 and 

 

Tetranychus urticae

 

 inhabiting greenhouse cucumbers.

 

6.

 

The model fits empirical data quite well and much better than if  prey and predators
were assumed to be evenly distributed among patches, or if the predators were distributed
independently of the prey.

 

7.

 

The analyses show that if  the predators do not show an aggregative response it will
always be an advantage to the prey to adopt a patchy distribution. On the other hand,
if  the predators are capable of responding to the distribution of prey, then it will be an
advantage to the prey to be evenly distributed when its density is low and switch to a
more patchy distribution when its density increases. The effect of mutual interference is
negligible unless predator density is very high.

 

8.

 

The model shows that prey patchiness and predator aggregation in combination can
change the functional response at the population level from type II to type III, indicat-
ing that these factors may contribute to stabilization of predator–prey dynamics.
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Introduction

 

The capacity of predators to find, kill and consume
prey plays a fundamental role in shaping the trophic
interactions of food webs (Begon, Harper & Townsend
1996). The success of an individual predator depends
on a combination of prey and predator traits that need
to be incorporated in a predation model to understand
fully the temporal and spatial dynamics of the species

involved. The most important component in such
models is the density of prey that determines the func-
tional response, i.e. the ability of a predator individual
to adjust its feeding rate to changes in prey density
(Solomon 1949). Phenomenological functional response
models like the ones by Holling (1959) and Ivlev (1961)
(see Jeschke, Kopp & Tollrian 2002 for a review) predict
the predation rate as a function of prey density only.
This will be true only if  the prey is evenly distributed in
space, which limits the general applicability of these
models as most prey populations occur in aggregated
patterns (Turchin & Kareiva 1989). To improve the pre-
cision and realism of functional response models it is
thus necessary to include the spatial distributions of
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both prey and predators, especially the ability of the
predator to aggregate in patches with abundant prey
(Murdoch & Stewart-Oaten 1989; Ives 1992; Ives 

 

et al

 

.
1999). Furthermore, as many predators tend to con-
centrate their searching efforts to patches where prey is
plentiful, mutual interference between searching pred-
ators also needs to be included as this is likely to deter-
mine the limit beyond which further aggregation no
longer pays-off  (Beddington 1975; Hassell & Rogers
1972; Van der Meer & Ens 1997).

As pointed out by Ives 

 

et al

 

. (1999), a functional
response depends on the spatial scale on which it is
measured. Thus, the average per capita predation rate
of predators occupying a complex environment with a
nonhomogeneous distribution of prey is likely to differ
from the per capita predation rate of a single predator
individual living in a small homogeneous area, even
though the mean prey density is the same. Ives 

 

et al

 

. (1999)
coined the former ‘the population functional response’
and the latter ‘the behavioural functional response’. It
is usually the behavioural response that is studied ex-
perimentally, while it is the population response that is of
ecological interest, because it affects the population
dynamics of predators and prey.

Recently, Williams & Martinez (2004) suggested a
generalized version of Holling’s (1959) disc equation,
which incorporates an extra parameter (

 

q

 

) that, depending
on its value, can change the functional response from
being of type II (convex) to type III (sigmoid). The
model shows that even small deviations from a type II
response in the direction of a type III response can have
profound effects on food-chain dynamics. However,
the problem is that 

 

q

 

 has no obvious biological inter-
pretation as it is unclear how it relates to prey distribu-
tion and/or predator behaviour. Thus, it seems likely
that 

 

q

 

 is not merely a predator-specific constant but a
variable that depends on how the prey is distributed.
In order to investigate this in more detail, I present a
functional response model that explicitly includes the
density and spatial distribution of prey, and the aggre-
gative response and mutual interference of predators.
Thus, the contribution of each component to the over-
all functional response can be studied separately and
its potentially stabilizing effect on the predator–prey
interaction can be assessed.

In another study (Nachman 2006), empirical data
were used to quantify the spatial distributions of two-
spotted spider mites 

 

Tetranychus urticae

 

 Koch and preda-
tory mites 

 

Phytoseiulus persimilis

 

 Athias-Henriot, and
to estimate the per capita predation rate of 

 

P. persimilis

 

taking the actual distributions of the two species on
greenhouse cucumbers into consideration. The results
indicate that prey patchiness may be an advantage
to the prey at high prey densities but an advantage to
the predator at low prey densities, primarily because
the specialist predator does not search at random but
spends relatively more time in the most profitable patches.
Applying the functional response model developed in the
present paper to the 

 

Tetranychus–Phytoseiulus

 

 system,

allows for a rather general analysis of the ecological
and evolutionary consequences of nonhomogeneous
spatial distributions of prey and predators.

 

The empirical background

 

Spider mites and predatory mites occurring on all leaves
from six cucumber plants 

 

Cucumis sativus

 

 L. were
counted, amounting to 92 293 spider mites and 24 801
predatory mites distributed over 440 leaves. For each
plant consisting of 

 

n

 

 leaves, the instantaneous per capita
predation rate 

 

f

 

 was computed as

eqn 1

where 

 

Y

 

 denotes the total number of predators on a plant
and 

 

f

 

jt

 

 is the per capita predation rate of a predator indi-
vidual of stage 

 

t

 

 staying on leaf 

 

j

 

 with area 

 

A

 

j

 

. Leaf 

 

j

 

 is
inhabited by 

 

x

 

js

 

 prey of stage 

 

s

 

 (

 

s

 

 

 

=

 

 eggs, juveniles, adults)
and 

 

y

 

jt

 

 predators of stage 

 

t

 

 (

 

t

 

 

 

=

 

 eggs, juveniles, adults). 
and 

 

h

 

st

 

 denote the stage-specific parameters of Holling’s
(1959) disc equation, i.e. the attack rate and the handling
time, respectively, of stage 

 

t

 

 predators attacking prey of
stage 

 

s

 

. Finally, 

 

η

 

t

 

 is a constant expressing the time a pred-
ator of stage 

 

t

 

 wastes per encounter with conspecifics
due to mutual interference (Murdoch 1973; Beddington
1975; Hassell 1978). If  stage structure was omitted from
eqn 1 (by assuming a fixed stage distribution across
leaves), the values of 

 

f

 

  were rather close to those obtained
from eqn 1. This indicates that stage structure can be
modelled implicitly by using lumped parameters derived
by weighting the relative contributions of the different
stages to the parameter values (Nachman 2006).

 

The model

 

Omitting stage distributions from eqn 1, and replacing
the observed distributions of  

 

X

 

 prey ( ) and

 

Y

 

 predators ( ) with probability distributions
lead to the generalized functional response model

eqn 2

where 

 

p

 

(

 

x

 

) denotes the probability that a patch is
inhabited by exactly 

 

x

 

(

 

x

 

 

 

=

 

 0, 1, 2, ... , 

 

∞

 

) prey and 

 

p

 

(

 

y 

 

|

 

 x

 

)
the conditional probability that patches with 

 

x

 

 prey are
occupied by 

 

y

 

(

 

y

 

 

 

=

 

 0, 1, 2, ... , 

 

∞

 

) predators. 

 

f

 

(

 

x

 

,

 

 y

 

) is the
instantaneous predation rate of a predator individual
staying in a patch occupied by 

 

x

 

 prey and 

 

y

 

 predators.

 

f

 

(

 

x

 

,

 

 y

 

) depends on the size of a patch (which for simplicity
is assumed to be the same for all patches), the number
of  prey (the behavioural functional response), the
number of predators (the aggregative response), and the
interaction between predators (mutual interference).
The challenge is to find mathematical expressions to
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substitute 

 

p

 

(

 

x

 

), 

 

p

 

(

 

y 

 

|

 

 x

 

) and 

 

f

 

(

 

x

 

,

 

 y

 

) in eqn 2. These
expressions should be simple enough to provide explicit
convergent solutions to the infinite summations and at
the same time be reasonably realistic.

 

   

 

Three different types of prey distribution to substitute

 

p

 

(

 

x

 

) will be considered in the following: (1) a clumped
distribution described by the negative binomial distri-
bution (NBD) with clumping parameter 

 

k

 

; (2) a random
distribution described by the Poisson distribution with
parameter 

 

≈

 

 (the mean number of prey per patch); and
(3) an even distribution where all patches are occupied
by the same density of prey. The clumping parameter 

 

k

 

can be considered either as a constant or as a function
of prey density (Nachman 2006).

The predator distribution has two components: an
aggregative response determined by the local density of
prey and some amount of spatial variation that cannot
be attributed to prey density (Chesson & Murdoch 1986;
Hassell & Wilson 1997). The prey density-dependent
component expresses the expected value of  

 

y

 

 at a given
density of  prey, i.e. 

 

E

 

(

 

y 

 

|

 

 x

 

) 

 

=

 

 

 

¥

 

x

 

. The prey density-
independent component expresses the variance of 

 

y

 

 for
a fixed 

 

x

 

 and is described by the conditional probability
function 

 

p

 

(

 

y 

 

|

 

 x

 

) with variance .

    

The expected number of predators inhabiting a patch
with x prey is assumed to increase with x according to
the general expression

eqn 3

where m, c and µ are constants (Nachman 2006).
Five main types of  aggregative response (see, e.g.

Van der Meer & Ens 1997) can be produced by eqn 3
depending on its parameter values: (i) c = 0: the preda-
tors do not show any aggregative response; (ii) c > 0,
m = 0, µ = 0: the aggregative response increases linearly
with prey density; (iii) c > 0, m = 0, µ > 0: the response
accelerates with prey density; (iv) c > 0, m = 0, µ < 0,
the response increases with decelerating slope and
approaches an upper asymptote: (v) c > 0, m = 1, µ < 0:
the response is sigmoid. Type (ii), (iv) and (v) corre-
spond to what Gascoigne & Lipcius (2004) classify as
type I, II and III aggregative response, respectively.
General solutions for ¥x are found by integration of eqn
3 (Appendix 1). The higher the value of c, the more will
the predators tend to aggregate in patches with abun-
dant prey, whereas ¥x will decrease in patches with few
prey. As ¥x cannot be negative, it sets an upper limit to
how large c can be (see Fig. 1).

To obtain explicit solutions to the aggregative response
function, it is necessary to specify whether the prey dis-
tribution p(x) is clumped, random or even (Appendix 2).
Furthermore, as it is most realistic that the aggregative

response levels off at high prey densities, only cases in
which µ is negative will be considered, encompassing con-
vex (m = 0) and sigmoid aggregative responses (m = 1).

-   


Three specific distributions of p (y | x) are considered to
describe the prey-independent component of predator
aggregation: (1) a clumped distribution characterized
by ; (2) a random distribution ( ); and
(3) an even distribution (  = 0). Applying the
NBD to represent the clumped distribution yields

, where κ expresses the tendency of
the predators to clump independently of  the prey. The
random (Poisson) distribution appears as a special case
of the NBD as κ → ∞.

    

The behavioural functional response of a predator
individual staying in a patch with x prey is assumed
to be convex (type II). A model that describes such
response is given by Ivlev (1961) as

eqn 4

where fm is the maximal predation rate per individual, ψ
a positive constant expressing the efficiency of the
predators to find and attack prey and A the patch area.
For simplicity, A is assumed to be the same for all
patches (and equal to the mean patch area A ).

   


Mutual interference among the y predators in a patch
with x prey may tend to reduce the per capita predation
rate. This effect is included in eqn 4 as (cf. Royama 1992)

σy x|
2

d
dx

cx ex m x¥
  = µ

Fig. 1. The expected number (¥x) of P. persimilis on a leaf
inhabited by x T. urticae for two different combinations of
mean prey (≈) and predator (¥) density. (a) Full line: ≈ = 400 T.
urticae/leaf and ¥ = 120 P. persimilis/leaf; (b) broken line:
≈ = 200 T. urticae/leaf and ¥ = 60 P. persimilis/leaf. Curves are
computed by means of eqn A7 with parameter values given in
Table 1, except that c in graph (b) is constrained to 1·298 to
prevent ¥x from becoming negative.

σy x x|   2 > ¥ σy x x|   2 = ¥

σy x|
2

σ κy x x x|     /2 2= +¥ ¥

f x f em
x A( )  (   )/= − −1 ψ
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eqn 5

where ε is a positive constant expressing the intensity of
mutual interference (ε = 0 implies no mutual interference).

    


Replacing f (x,y) in eqn 2 with eqn 5 yields

eqn 6

According to Appendix 4, eqn 6 reduces to

eqn 6a

if  p(y | x) follows a NBD with parameters (¥x,κ), and to

eqn 6b

if  p(y | x) follows a Poisson distribution with mean ¥x.
Finally, if  the aggregative response has no prey density-
independent component (i.e.  = 0), all patches with
x prey are expected to be inhabited by ¥x predators, so

 and
eqn 6 therefore becomes

eqn 6c

The three special cases of eqn 6 can be solved numeri-
cally, because the infinite sums converge as x → ∞.
However, approximate analytical solutions are derived
by making some simplifying assumptions. The terms
(1 + (¥x/κ)(1 − e−ε/A))−(κ+1) in eqn 6a,  in eqn 6b,
and e−ε¥x/A in eqn 6c will be equal to 1 when ε = 0 and less
than 1 when ε > 0. Hence, these terms represent the
inhibiting effect of mutual interference on the predation
rate. As long as ε/A is small, all three terms will be close
to unity, but decrease with an increase in ¥x, which in
turn increases with ¥. Therefore, as an approximation, the
overall inhibiting effect of mutual interference is assumed
to depend on the overall density of predators (¥) rather
than on ¥x. Equation 6 can therefore be replaced by

eqn 7

where I is a factor accounting for mutual interference 
(0 < I ≤ 1), calculated as Iclumped = (1 + (¥/κ)(1 − e−ε/A))−(κ+1),

 and Ieven = e−ε¥/A, depending on whe-
ther the predators for a given value of x are clumped,
randomly or evenly distributed, respectively. It appears
that for ε > 0, Iclumped < Irandom < Ieven and that Iclumped

declines with decreasing κ. This implies that scatter
(prey density-independent variation) in the aggregative
response will increase mutual interference and thereby
reduce the overall predation rate.

¥x in eqn 7 depends on prey distribution and on the
shape of  the aggregative response (Appendix 2). If
the prey is either clumped or randomly distributed and
the predators show a convex aggregative response,
substitution of ¥x in eqn 7 by eqn A6 gives

which leads to

eqn 8a

where the functions Q0(·) and Q1(·) depend on the den-
sity and distribution of the prey (Appendix 5).

If the predators show a sigmoid aggregative response,
and the prey is either clumped or randomly distributed,
¥x is replaced by eqn A7, yielding

eqn 8b

If the predators show no aggregative response and prey
distribution is either clumped or random, ¥x will be
equal to ¥ for all x. Setting c = 0 in eqn 8b yields

eqn 8c

Finally, if  the prey is evenly distributed, so that prey
density is ≈/A in all patches, eqn 7 reduces to

eqn 8d

Analyses

    
 

The models require three state variables (≈, ¥, and A)
and seven parameters ( fm, ψ, ε, c, µ, k, and κ) to com-
pute  f. Furthermore, as k may be density-dependent it
could be replaced by a function of ≈, which would add
two extra parameters to the model (Nachman 1984).
Table 1 gives the estimated parameter values for the T.
urticae–P. persimilis system if  k is density-independent,
otherwise see Nachman 2006).
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The model-predicted predation rates ( fpred) were com-
pared with the empirical values ( fobs), which were obtained
by means of eqn 1. It should be emphasized that observed
and predicted values of f are not completely independ-
ent, as data from the same plants were used to calculate
the values of fobs and to estimate the model’s parameters.
However, no attempts were made afterwards to calibrate
the parameters to the observed predation rates so as to
improve the agreement between fobs and fpred.

     


The functional response of a predator has a stabilizing
effect on the dynamics of the prey if  the predation risk
per prey increases with increasing prey density (Murdoch
& Oaten 1975). Convex functional response curves (type
II), like Holling’s disc equation or Ivlev’s predation model,
lead to a monotonous decline in the predation risk for
a given predator density, and therefore do not posses the
potential of being stabilizing, whereas a sigmoid (type III)
response may be stabilizing up to a certain prey density.
Murdoch (1977) suggests using ∂f/∂x > f/x as a crite-
rion to identify the density interval for which the func-

tional response has the capacity to be stabilizing. It
should be emphasized that even if  this criterion is met,
it does not necessarily mean that the predator–prey system
will be stable, because other conditions have to be ful-
filled as well (see Discussion). However, applying the above
criterion to the model can reveal whether incorpora-
tion of spatial heterogeneity, mutual interference and
predator aggregation change an otherwise type II func-
tional response to a type III.

Results

    
 

The correlation coefficient (R) between the observed pre-
dation rates ( fobs) and the model-predicted rates  ( fpred)
expresses the qualitative fit of a model to data. R was
high and almost the same irrespective of whether k was
assumed to be density-dependent (using the relationship
(1 + x/k)−k = , where α and β are positive constants
(cf. eqn A3 in Nachman 2006) or density-independent
provided the prey was clumped and the predators showed
an aggregative response. The correlation decreased when
the predators were assumed to lack an aggregative response
or when the prey was assumed to be evenly distributed
(Table 2).

Table 2 also shows how much of the variation in  fobs

that could be explained by the respective models. The best
quantitative agreement (88·9%) between fobs and fpred

was achieved by eqn 6 assuming density independence
of k, although k was found to vary with prey density
(Nachman 2006). However, density dependence of k will
only be of importance when prey density is either very low
or very high, but not within the range of observed densi-
ties (0·002–3·758 T. urticae cm−2). Equation 8 explained

e−α β
≈

Table 2. Comparisons between observed (  fobs) and predicted predation rates (  fpred). The models are compared with respect to the correlation between fobs 
and fpred and the percentage variation in fobs explained by means of the model

Greenhouse data

Predicted predation rates ( fpred) 

Prey clumped Prey even

Predator aggregation No predator aggregation

Plant
Average leaf
size (cm2) T. urt./leaf (≈) P. per./leaf (¥)  fobs

k density-
dependent k density-independent

Eqn 6* Eqn 6† Eqn 8‡ Eqn 8§ Eqn 8¶

1 166·8 416·3 73·52 3·932 4·676 4·569 5·006 1·871 6·558
2 168·3 17·53 7·096 3·318 2·772 2·508 2·574 0·475 0·680
3 160·6 0·316 4·776 0·096 0·186 0·075 0·078 0·013 0·014
4 234·6 58·33 99·43 1·471 2·217 2·260 2·547 0·780 1·460
5 191·1 0·262 2·857 0·014 0·185 0·068 0·070 0·009 0·009
6 175·5 659·6 187·4 3·362 4·299 3·388 3·832 1·914 6·580
Correlation between fobs and fpred (R) 0·959 0·949 0·937 0·828 0·771
% variation in fobs explained by fpred 84·7 88·9 79·6 1·6 0

*Predictions based on eqn 6 and parameter values in Table 1, but with a density-dependent prey clumping parameter (k). †Predictions based on eqn 6 but 
with density-independent k. ‡Predictions based on eqn 8 but with the same assumptions as in the previous column. §Predators are assumed to search 
independently of prey distribution. ¶Prey is assumed to be evenly distributed.

Table 1. Parameter values of the model. Parameters allowing for density dependence in
k are given in Nachman (2006)

Parameter Parameter description Value

fm Maximal predation rate 7·787 day−1

ψ Attack efficiency 0·887 cm2

ε Mutual interference coefficient 0·0402 cm2

c
Aggregative response of P. persimilis

2·220
µ −0·0834
k Aggregation index of T. urticae 0·091
κ Aggregative response of P. persimilis conditioned on ¥x 0·450

}
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79·6%, which indicates that the approximations made
to derive this equation from eqn 6 were acceptable. The last
two columns of Table 2 demonstrate the importance of
taking the aggregative response and distribution of prey
into consideration when predicting predation rates.
Without predator aggregation (i.e. c = 0), the predicted
predation rates become consistently lower than fobs,
which shows the advantage to the predators of being
able to adopt nonrandom search. On the other hand, if
the prey is assumed to be evenly distributed the pre-
dicted predation rates will be lower than fobs at low prey
densities but higher than fobs when prey density is high.

     
      


The parameters obtained from the P. persimilis–T. urticae
system were used as the standard case to which changes
in the model assumptions could be compared. All
predictions of  f  were obtained from eqn 6 assuming
density independence of k.

Figure 2 shows that the functional response of P.
persimilis is predicted to increase when mean prey den-
sity (≈) increases and/or when mean predator density
(¥) decreases. The upper plateau is reached more steeply
when predator density is low than when it is high. Figure 3
shows that prey clumping increases the predation rate
at low prey densities and decreases it at high prey densities
as compared with a random distribution of prey. The
result for an even prey distribution is almost identical
to that of a random prey distribution and is therefore not
shown. Higher predator density reduces the per capita
predation rate, in particular when the prey is aggregated,
because of the intense mutual interference experienced
by the predators when crowding in the same patches as
the prey. A change in prey distribution from random to
aggregated also changes the functional response from
type II to type III (Fig. 4), indicating that prey patch-
iness per se may be able to stabilize the predator–prey
dynamics as long as the mean prey density does not

exceed c.0·02 prey cm−2. Nonrandom search for a patchily
distributed prey (k = 0·091) leads to higher predation
rates than random search, in particular at low predator
densities (Fig. 5).

Discussion

     
    
 

Traditionally, predator–prey (or parasitoid–host) theory
has presumed that populations are homogeneously dis-
tributed in space (e.g. Vandermeer & Goldberg 2003).
However, in the real world this will hardly ever be true,
which means that the performance of the predators will
depend on how the prey is distributed and how the pred-
ators respond to this distribution. Ignoring these spatial
effects may seriously bias the estimated predation rates
at the population level (Ives et al. 1999) and may lead to
erroneous conclusions concerning the ability of the pred-
ators to regulate the density of their prey (Hochberg &
Holt 1999) or exaggerate the risk of prey extinction due
to a predator-mediated Allee effect (Gascoigne & Lipcius
2004). Thus, analyses of host–parasitoid models have

Fig. 2. The predicted per capita predation rate ( fpred)  for
different densities of  T. urticae and P. persimilis based on
eqn 6 and parameter values given in Table 1.

Fig. 3. The effect of prey distribution and predator density on
the functional response predicted by means of eqn 6 and
parameter values given in Table 1.

Fig. 4. The instantaneous risk of predation calculated from
Fig. 2, assuming a mean predator density of one individual
per cm2.
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shown that nonrandom distribution of parasitism (either
in time or space) can stabilize the interactions between
hosts and parasitoids with discrete generations (Hassell
et al. 1991). It seems likely that this also applies to predator–
prey systems with overlapping generations, but
because such systems are not as straightforward to analyse
mathematically as host–parasitoid systems where the CV2 >
1 criterion can be used (Hassell et al. 1991; Taylor 1993),
the analyses of predator–prey interactions have often been
limited to whether the functional response is potentially
stabilizing or not (Murdoch 1977; Murdoch & Stewart-
Oaten 1989). A full analysis of predator–prey stability
based on Kolmogorov’s theorem would require additional
information about the relationship between prey density
and the numerical response of the predators (May 1974).

The present model shows that prey patchiness can
markedly reduce the feeding rate of a predator individual
unless it is able to compensate by adopting a nonran-
dom searching behaviour. Such behaviour will lead to a
positive aggregative response where the majority of
predators will cluster in the most profitable prey patches.
If  the degree of prey aggregation is high, the predators
may actually be able to achieve a higher predation rate
than they would obtain if  the prey had been evenly dis-
tributed, but only as long as prey density is low. At high
prey densities, a relatively large part of the predator
population will waste time by searching patches with
prey densities below average, whereas the remaining part
spends time in patches with high prey density. Owing to
satiation of the predators staying in the most profitable
patches, the arithmetic mean of the predation rates aver-
aged over all patches will thus be lower than if  all pred-
ators had been exposed to the mean prey density ≈. The
fact that prey aggregation benefits the predators at low
densities may also have implications for biological con-
trol, because it slows down the growth rate of the prey and
helps the predators to survive during periods of prey
scarcity (Murdoch & Briggs 1996). However, when the
model was applied to the P. persimilis–T. urticae system,
the type III response was only regulatory up to a prey
density of about 0·02 spider mites per cm2 (correspond-
ing to about 200–400 individuals on a cucumber plant),

so it seems unlikely that such a weak type III response can
prevent outbreaks of spider mites. In an experimental
set-up, Ryoo (1996) did not find evidence for a type III
response when he varied the distribution of T. urticae
eggs in an arena, but the area of his system (2500 cm2)
was much smaller than that of a cucumber plant. Besides,
it may not be possible to distinguish between a type II
response and a weak type III response when experi-
mental data are analysed statistically (Juliano 1993).

 

From an evolutionary point of view, a prey species may
switch from a random distribution to a more clumped
distribution in order to reduce the predation pressure,
but this strategy will only work as long as the predators
search at random. Once the predators have responded
by evolving searching behaviours that improve their for-
aging success, the prey should be selected to reduce pre-
dation pressure by being evenly distributed at low density
and being more patchily distributed at high densities. Prey
aggregation may lead to the so-called ‘dilution effect’,
where the risk of predation to individual prey declines
with the number of surrounding conspecifics because
of relatively fewer predators per prey and/or because the
individual predator becomes satiated (Turchin & Kareiva
1989). In fact, many prey species tend to become more
aggregated as the mean density increases [see Taylor
(1984) for a review]. This also applies to T. urticae (Nach-
man 1981). Hence, prey patchiness and predator aggre-
gation might be seen as the outcome of a coevolutionary
arms race (Janzen 1980; Abrams 2000; Lima 2002),
although other factors than avoidance of predation may
also contribute to prey aggregation, e.g. the quality and
distribution of the prey’s food, females laying eggs in
clusters, and offspring tending to stay close to their
natal site (Turchin & Kareiva 1989; Begon et al. 1996).

     
 

The present model represents progress relative to other
analytical functional response models (e.g. Murdoch &
Oaten 1975; Hassell et al. 1991; Ives et al. 1999; Williams
& Martinez 2004) because it integrates prey patchiness,
predator aggregation and mutual interference between
predators into a single analytical model, which can be
solved either numerically (eqn 6) or explicitly (eqn 8),
depending on the validity of the approximations. The
model is general in the sense: (1) that it allows for var-
iation in mean densities of both prey and predators; (2)
it includes the most common (type II) functional response
type at the patch level; (3) it allows for different types of
prey distribution (even, random and clumped); (4) it
allows for different types of prey density-dependent aggre-
gative responses (none, linear, hyperbolic, sigmoid); and (5)
it allows the predators to exhibit mutual interference. Fur-
thermore, the model’s parameters can be estimated exper-
imentally and interpreted in a biologically meaningful

Fig. 5. The effect of predator aggregation and density on the
functional response predicted by means of eqn 6 and
parameter values given in Table 1.
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way. Finally, the model can be used to make specific pre-
dictions that can be compared against empirical data as
demonstrated for the T. urticae–P. persimilis system.

The model also has limitations:
1. It focuses on only one prey and one predator species.
2. It ignores variation among individuals within species.
3. Patches are assumed to be identical except for vari-
ation in number of prey and predators.
4. The functional response, the aggregative response and
mutual interference are modelled as empirically based
(phenomenological) mathematical relationships that do
not necessarily incorporate the underlying biological
mechanisms in a realistic way (van der Meer & Ens 1997).
5. The model is computational complex and contains
many parameters that have to be estimated from sepa-
rate experiments. If predation could be observed directly,
an alternative way of estimating the parameters might
be to fit the complete model to the observed predation
rates, but the large number of parameters makes it unlikely
that this will yield values that are biologically meaningful
(see, e.g. Jost & Arditi 2001).
6. The number of patches and their distribution in space
are not modelled explicitly. In principle, the model pre-
sumes that any patch in the habitat is equally likely to
be found by a predator, allowing the predators to redis-
tribute in response to a changing prey distribution. This
may be a reasonable assumption for a mobile predator
inhabiting a small system, such as P. persimilis and
T. urticae occupying a single cucumber plant, although
the large scatter about the aggregative response indi-
cates that redistribution is far from being perfect. At a
spatial scale larger than a single plant, the predators
are likely to show even less coupling with their prey,
making the prey density-dependent component of the
aggregative response less clear (i.e. c decreases) while
the prey density-independent component becomes more
pronounced (i.e. 1/κ increases).
7. Transit time for individuals moving from one patch
to another is not included. If  transit time is long, it will
delay the redistribution of  individuals and thereby
contribute to the scatter in the aggregative response.
Transit time may also reduce the overall foraging
efficiency (Ryoo 1996).

   

Incorporating spatial effects into population models
tends to render such models analytically intractable,
unless several simplifying assumptions are being made.
Therefore, alternative approaches, such as simulation
of population-based (e.g. Nachman 2001) and individual-
based (e.g. Casas 1990; Bancroft & Margolies 1999)
models, are usually preferred in order not to sacrifice
realism. However, instead of regarding analytical models
as alternatives to simulation models, they may rather
be considered as supplements serving two purposes: (1)
they are better to provide theoretical insight into the
factors that affect population dynamics, and (2) they
can serve as submodels in simulation models to save

computing time. The model presented here may fulfil
both purposes: On one hand, it can be used to analyse
the importance of incorporating spatial heterogeneity
in population models and to analyse the costs and ben-
efits of being patchily distributed. On the other hand,
the model may be included as a submodel in a metap-
opulation model of predator–prey dynamics to predict
the current predation rate (i.e. the predation rate from
time t to time t + ∆t where ∆t has to be so short that
prey distribution can be regarded as constant) of the
predators occupying a patch (e.g. a plant), which in
itself  consists of patches (e.g. leaves). For instance, in
the T. urticae–P. persimilis system at least three differ-
ent spatial scales can be identified: leaves, plants and an
entire field (or a greenhouse). Plants within a field can
be modelled in a metapopulation context (Nachman
2001), but computing time would increase dramatically
if the within-plant dynamics should be modelled explicitly.
Instead, the present model may be used as a short-cut
by modelling within-plant processes implicitly.
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Appendix 1. The aggregative response

Integration of eqn 3 and constraining the solution so that  and ¥x ≥ 0 for x ≥ 0 yield the following
solutions:
1 No response (i.e. c = 0):

¥x = ¥ eqn A1

2 Linear (i.e. c > 0, m = 0, µ = 0):

eqn A2

3 Accelerating (i.e. c > 0, m = 1, µ = 0):

eqn A3

where δ2 is the sportial variance  of the prey population.
4 Convex (i.e. c > 0, m = 0, µ < 0):
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 eqn A4

5 Sigmoid (i.e. c > 0, m = 1, µ < 0):

eqn A5

Appendix 2. The aggregative response for specific prey distributions

   

Replacing p(x) in eqns A4 and A5 with the individual terms of the NBD (see Appendix 3) yields

eqn A6

eqn A7

   

Replacing p(x) with the individual terms of the Poisson distribution (Appendix 3) yields:

eqn A8

eqn A9

   

As x is equal to ≈ in all patches, the expected number of predators per patch is given by eqn A1.

Appendix 3

Derivation of 

Defining p = k/(x + k) and q = 1 − p = x/(x + k) means that the individual terms of  the NBD can be written
as p(x) = [Γ(x + k)/x!Γk]pkqx. This means that

eqn A10

where q′ = qea and p′ = 1 − q′. Provided q′ < 1, which requires that a < ln(1 + k/≈), the right-hand sum in eqn A10
will converge to unity, yielding

eqn A11
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As (1 + 1/u)u = e for u → ∞, we may define 1/u = x/k(1 − ea) yielding −k = −≈(1 − ea)u. Hence, if  p(x) is distributed
according to the Poisson distribution (corresponding to k → ∞) we get

eqn A12

To solve , apply eqn A10 to write , but as
 can be replaced by kq′/p′ (provided q′ < 1), which leads to

eqn A13

For p(x) being distributed according to the Poisson distribution, eqn A13 reduces to

eqn A14

Appendix 4

Derivation of  if p(y | x) is a NBD with parameters ¥x and κ.

In line with Appendix 3, we define , and p′ = 1 − q′.
 can therefore be written as

eqn A15

If the predators are randomly distributed for a given ¥x (i.e. κ → ∞), eqn A15 reduces to

eqn A16

Appendix 5. The Q-function

The Q-function is defined (see also Appendix 3) as

eqn A17

which gives

eqn A18

eqn A19

for b = 0 and b = 1, respectively, if  p(x) follows the NBD with parameters ≈ and k, and

eqn A20

which becomes

eqn A21

eqn A22

if  p(x) follows the Poisson distribution with parameter ≈.
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